0
Research Papers: Radiative Heat Transfer

Line-by-Line Random-Number Database for Monte Carlo Simulations of Radiation in Combustion System

[+] Author and Article Information
Tao Ren

Mem. ASME
School of Engineering,
University of California,
Merced, CA 95343
e-mail: tren@ucmerced.edu

Michael F. Modest

Life Fellow ASME
School of Engineering,
University of California,
Merced, CA 95343
e-mail: mmodest@ucmerced.edu

1Corresponding author.

2Present address: China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received July 23, 2018; final manuscript received September 21, 2018; published online November 22, 2018. Editor: Portonovo S. Ayyaswamy.

J. Heat Transfer 141(2), 022701 (Nov 22, 2018) (8 pages) Paper No: HT-18-1465; doi: 10.1115/1.4041803 History: Received July 23, 2018; Revised September 21, 2018

With today's computational capabilities, it has become possible to conduct line-by-line (LBL) accurate radiative heat transfer calculations in spectrally highly nongray combustion systems using the Monte Carlo method. In these calculations, wavenumbers carried by photon bundles must be determined in a statistically meaningful way. The wavenumbers for the emitting photons are found from a database, which tabulates wavenumber–random number relations for each species. In order to cover most conditions found in industrial practices, a database tabulating these relations for CO2, H2O, CO, CH4, C2H4, and soot is constructed to determine emission wavenumbers and absorption coefficients for mixtures at temperatures up to 3000 K and total pressures up to 80 bar. The accuracy of the database is tested by reconstructing absorption coefficient spectra from the tabulated database. One-dimensional test cases are used to validate the database against analytical LBL solutions. Sample calculations are also conducted for a luminous flame and a gas turbine combustion burner. The database is available from the author's website upon request.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Modest, M. F. , 2013, Radiative Heat Transfer, 3rd ed., Academic Press, New York.
Howell, J. R. , and Perlmutter, M. , 1964, “ Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls,” ASME J. Heat Transfer, 86(1), pp. 116–122. [CrossRef]
Modest, M. F. , 1992, “ The Monte Carlo Method Applied to Gases With Spectral Line Structure,” Numer. Heat Transfer—Part B: Fundamentals, 22(3), pp. 273–284. [CrossRef]
Cherkaoui, M. , Dufresne, J.-L. , Fournier, R. , Grandpeix, J.-Y. , and Lahellec, A. , 1996, “ Monte Carlo Simulation of Radiation in Gases With a Narrow-Band Model and a Net-Exchange Formulation,” ASME J. Heat Transfer, 118(2), pp. 401–407. [CrossRef]
Farmer, J. T. , and Howell, J. R. , 1994, “ Monte Carlo Prediction of Radiative Heat Transfer in Inhomogeneous, Anisotropic, Nongray Media,” J. Thermophys. Heat Transfer, 8(1), pp. 133–139. [CrossRef]
Farmer, J. T. , and Howell, J. R. , 1998, “ Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media,” Advances in Heat Transfer, Vol. 31, Hartnett, J. P. and Irvine, T. F. , eds., Academic Press, New York.
Wang, L. , Yang, J. , Modest, M. F. , and Haworth, D. C. , 2007, “ Application of the Full-Spectrum k-Distribution Method to Photon Monte Carlo Solvers,” J. Quant. Spectrosc. Radiat. Transfer, 104(2), pp. 297–304. [CrossRef]
Tang, K. C. , and Brewster, M. Q. , 1999, “ Analysis of Molecular Gas Radiation: Real Gas Property Effects,” J. Thermophys. Heat Transfer, 13(4), pp. 460–466. [CrossRef]
Wang, A. , and Modest, M. F. , 2007, “ Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media,” Int. J. Heat Mass Transfer, 50(19–20), pp. 3877–3889. [CrossRef]
Wang, A. , Modest, M. F. , Haworth, D. C. , and Wang, L. , 2008, “ Monte Carlo Simulation of Radiative Heat Transfer and Turbulence Interactions in Methane/Air Jet Flames,” J. Quant. Spectrosc. Radiat. Transfer, 109(2), pp. 269–279. [CrossRef]
Mehta, R. S. , Haworth, D. C. , and Modest, M. F. , 2009, “ An Assessment of Gas-Phase Reaction Mechanisms and Soot Models for Laminar Atmospheric-Pressure Ethylene–Air Flames,” Proc. Combust. Inst., 32(1), pp. 1327–1334.
Mehta, R. S. , Modest, M. F. , and Haworth, D. C. , 2010, “ Radiation Characteristics and Turbulence–Radiation Interactions in Sooting Turbulent Jet Flames,” Combust. Theory Modell., 14(1), pp. 105–124. [CrossRef]
Ren, T. , and Modest, M. F. , 2013, “ Hybrid Wavenumber Selection Scheme for Line-by-Line Photon Monte Carlo Simulations in High-Temperature Gases,” ASME J. Heat Transfer, 135(8), p. 084501. [CrossRef]
Rothman, L. S. , Gordon, I. E. , Barber, R. J. , Dothe, H. , Gamache, R. R. , Goldman, A. , Perevalov, V. I. , Tashkun, S. A. , and Tennyson, J. , 2010, “ HITEMP, the High-Temperature Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer, 111(15), pp. 2139–2150. [CrossRef]
Zhao, X. Y. , Haworth, D. C. , Ren, T. , and Modest, M. F. , 2013, “ A Transported Probability Density Function/Photon Monte Carlo Method for High-Temperature Oxy–Natural Gas Combustion With Spectral Gas and Wall Radiation,” Combust. Theory and Model., 17(2), pp. 354–381. [CrossRef]
Cai, J. , Lei, S. , Dasgupta, A. , Modest, M. F. , and Haworth, D. C. , 2014, “ High Fidelity Radiative Heat Transfer Models for High-Pressure Laminar Hydrogen–Air Diffusion Flames,” Combust. Theory Modell., 18(6), pp. 607–626.
Rothman, L. S. , Gordon, I. E. , Barbe, A. , Benner, D. C. , Bernath, P. F. , Birk, M. , Boudon, V. , Brown, L. R. , Campargue, A. , Champion, J.-P. , Chance, K. , Coudert, L. H. , Dana, V. , Devi, V. M. , Fally, S. , Flaud, J.-M. , Gamache, R. R. , Goldman, A. , Jacquemart, D. , Kleiner, I. , Lacome, N. , Lafferty, W. J. , Mandin, J.-Y. , Massie, S. T. , Mikhailenko, S. N. , Miller, C. E. , Moazzen-Ahmadi, N. , Naumenko, O. V. , Nikitin, A. V. , Orphal, J. , Perevalov, V. I. , Perrin, A. , Predoi-Cross, A. , Rinsland, C. P. , Rotger, M. , Simeckova, M. , Smith, M. A. H. , Sung, K. , Tashkun, S. A. , Tennyson, J. , Toth, R. A. , Vandaele, A. C. , and Auwera, J. V. , 2009, “ The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer, 110(9–10), pp. 533–572. [CrossRef]
Rothman, L. S. , Gordon, I. E. , Babikov, Y. , Barbe, A. , Benner, D. C. , Bernath, P. F. , Birk, M. , Bizzocchi, L. , Boudon, V. , Brown, L. R. , Campargue, A. , Chance, K. , Cohen, E. A. , Coudert, L. H. , Devi, V. M. , Drouin, B. J. , Fayt, A. , Flaud, J.-M. , Gamache, R. R. , Harrison, J. J. , Hartmann, J.-M. , Hill, C. , Hodges, J. T. , Jacquemart, D. , Jolly, A. , Lamouroux, J. , Le Roy, R. J. , Li, G. , Long, D. A. , Lyulin, O. M. , Mackie, C. J. , Massie, S. T. , Mikhailenko, S. , Müller, H. S. P. , Naumenko, O. V. , Nikitin, A. V. , Orphal, J. , Perevalov, V. , Perrin, A. , Polovtseva, E. R. , Richard, C. , Smith, M. A. H. , Starikova, E. , Sung, K. , Tashkun, S. , Tennyson, J. , Toon, G. C. , Tyuterev, Vl. G. , and Wagner, G. , 2013, “ The HITRAN2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer, 130, pp. 4–50. [CrossRef]
Tashkun, S. A. , and Perevalov, V. I. , 2008, “ Carbon Dioxide Spectroscopic Databank (CDSD): Updated and Enlarged Version for Atmospheric Applications,” Tenth HITRAN Conference, Cambridge, MA, Paper No. T2.3.
Tashkun, S. A. , and Perevalov, V. I. , 2011, “ CDSD-4000: High-Resolution, High-Temperature Carbon Dioxide Spectroscopic Databank,” J. Quant. Spectrosc. Radiat. Transfer, 112(9), pp. 1403–1410. [CrossRef]
Modest, M. F. , and Bharadwaj, S. P. , 2002, “ High-Resolution, High-Temperature Transmissivity Measurements and Correlations for Carbon Dioxide–Nitrogen Mixtures,” J. Quant. Spectrosc. Radiat. Transfer, 73(2–5), pp. 329–338. [CrossRef]
Bharadwaj, S. P. , and Modest, M. F. , 2007, “ Medium Resolution Transmission Measurements of CO2 at High Temperature—An Update,” J. Quant. Spectrosc. Radiat. Transfer, 103(1), pp. 146–155. [CrossRef]
Evseev, V. , Fateev, A. , and Clausen, S. , 2012, “ High-Resolution Transmission Measurements of CO2 at High Temperatures for Industrial Applications,” J. Quant. Spectrosc. Radiat. Transfer, 113(17), pp. 2222–2233. [CrossRef]
Bharadwaj, S. P. , Modest, M. F. , and Riazzi, R. J. , 2006, “ Medium Resolution Transmission Measurements of Water Vapor at High Temperature,” ASME J. Heat Transfer, 128(4), pp. 374–381. [CrossRef]
Fateev, A. , and Clausen, S. , 2008, On-Line Non-Contact Gas Analysis, Danmarks Tekniske Universitet Risø Nationallaboratoriet for Bæredygtig Energi, Roskilde, Kingdom of Denmark.
Christiansen, C. , Stolberg-Rohr, T. , Fateev, A. , and Clausen, S. , 2016, “ High Temperature and High Pressure Gas Cell for Quantitative Spectroscopic Measurements,” J. Quant. Spectrosc. Radiat. Transfer, 169, pp. 96–103. [CrossRef]
Wang, A. , 2007, “ Investigation of Turbulence–Radiation Interactions in Turbulent Flames Using a Hybrid FVM/Particle-Photon Monte Carlo Approach,” Ph.D. thesis, The Pennsylvania State University, University Park, PA. https://etda.libraries.psu.edu/files/final_submissions/449
Modest, M. F. , and Haworth, D. C. , 2016, Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications, Springer, New York.
Chang, H. , and Charalampopoulos, T. T. , 1990, “ Determination of the Wavelength Dependence of Refractive Indices of Flame Soot,” Proc. R. Soc. (London) A, 430(1880), pp. 577–591. [CrossRef]
Mehta, R. S. , 2008, “ Detailed Modelling of Soot Formation and Turbulence-Radiation Interactions in Turbulent Jet Flmaes,” Ph.D. thesis, The Pennsylvania State University, University Park, PA. https://etda.libraries.psu.edu/files/final_submissions/5319
Siemens, A. G. , 2005, “ SGT-100 Industrial Gas Turbine,” Technical Report, Siemans AG, Munich, Germany, accessed Oct. 13, 2017, https://www.siemens.com/global/en/home/products/energy/power-generation/gas-turbines/sgt-100.html#!/
Igoe, B. M. , 2011, “ Dry Low Emissions Experience Across the Range of Siemens Small Industrial Gas Turbines,” Siemens Industrial Turbomachinery Limited, Lincoln, UK. https://www.energy.siemens.com/nl/pool/hq/energy-topics/pdfs/en/techninal%20paper/Dry%20Low%20Emissions%20Experience.pdf
Stopper, U. , Meier, W. , Sadanandan, R. , Stöhr, M. , Aigner, M. , and Bulat, G. , 2013, “ Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape,” Combust. Flame, 160(10), pp. 2103–2118. [CrossRef]
Stopper, U. , Aigner, M. , Meier, W. , Sadanandan, R. , Stöhr, M. , and Kim, I. S. , 2009, “ Flow Field and Combustion Characterization of Premixed Gas Turbine Flames by Planar Laser Techniques,” ASME J. Eng. Gas Turbines Power, 131(2), p. 021504. [CrossRef]
Stopper, U. , Aigner, M. , Ax, H. , Meier, W. , Sadanandan, R. , Stöhr, M. , and Bonaldo, A. , 2010, “ PIV, 2D-LIF and 1D-Raman Measurements of Flow Field, Composition and Temperature in Premixed Gas Turbine Flames,” Exp. Therm. Fluid Sci., 34(3), pp. 396–403. [CrossRef]
Bulat, G. , Jones, W. P. , and Marquis, A. J. , 2013, “ Large Eddy Simulation of an Industrial Gas-Turbine Combustion Chamber Using the Sub-Grid PDF Method,” Proc. Combust. Inst., 34(2), pp. 3155–3164. [CrossRef]
Bulat, G. , Jones, W. P. , and Marquis, A. J. , 2014, “ NO and CO Formation in an Industrial Gas-Turbine Combustion Chamber Using LES With the Eulerian Sub-Grid PDF Method,” Combust. Flame, 161(7), pp. 1804–1825. [CrossRef]
Abou-Taouk, A. , Sadasivuni, S. , Lörstad, D. , Ghenadie, B. , and Eriksson, L. , 2015, “ CFD Analysis and Application of Dynamic Mode Decomposition for Resonant-Mode Identification and Damping in an SGT-100 DLE Combustion System,” Seventh European Combustion Meeting, Budapest, Hungary, Mar. 30–Apr. 2, pp. 4–46. https://www.researchgate.net/publication/274318069_CFD_analysis_and_application_of_dynamic_mode_decomposition_for_resonant-mode_identification_and_damping_in_an_SGT-100_DLE_combustion_system
Bulat, G. , Fedina, E. , Fureby, C. , Meier, W. , and Stopper, U. , 2015, “ Reacting Flow in an Industrial Gas Turbine Combustor: LES and Experimental Analysis,” Proc. Combust. Inst., 35(3), pp. 3175–3183. [CrossRef]
Bulat, G. , Jones, W. P. , and Navarro-Martinez, S. , 2015, “ Large Eddy Simulations of Isothermal Confined Swirling Flow in an Industrial Gas-Turbine,” Int. J. Heat Fluid Flow, 51, pp. 50–64. [CrossRef]
Abou-Taouk, A. , Farcy, B. , Domingo, P. , Vervisch, L. , Sadasivuni, S. , and Eriksson, L.-E. , 2016, “ Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine,” Combust. Sci. Technol., 188(1), pp. 21–39. [CrossRef]
Ren, T. , Modest, M. F. , and Roy, S. , 2018, “ Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber,” ASME J. Eng. Gas Turbines Power, 140(5), p. 051503. [CrossRef]
Sabel'Nikov, V. A. , and da Silva, L. F. F. , 2002, “ Partially Stirred Reactor: Study of the Sensitivity of the Monte Carlo Simulation to the Number of Stochastic Particles With the Use of a Semi-Analytic, Steady-State, Solution to the PDF Equation,” Combust. Flame, 129(1–2), pp. 164–178. [CrossRef]
OpenCFD, 2013, “ Version2.2.x, OpenFOAM Website,” OpenCFD Ltd., Bracknell, UK, accessed Oct. 13, 2017, https://github.com/OpenFOAM/OpenFOAM-2.2.x

Figures

Grahic Jump Location
Fig. 1

Illustration of spectral random-number relation for a system with ns emitting species

Grahic Jump Location
Fig. 2

Total size (GB) of the PMC–LBL random-number relation database at each pressure

Grahic Jump Location
Fig. 3

Reconstruction of 50 bar, 1500 K CO2 pressured-base absorption coefficients from PMC–LBL spectral database by drawing 1 × 106 random numbers

Grahic Jump Location
Fig. 4

Reconstruction of 50 bar, 500 K CH4 pressured-base absorption coefficients from PMC–LBL spectral database by drawing 1 × 106 random numbers

Grahic Jump Location
Fig. 5

Reconstruction of 50 bar, 500 K C2H4 pressured-base absorption coefficients from PMC–LBL spectral database by drawing 1 × 106 random numbers

Grahic Jump Location
Fig. 6

Reconstruction of soot absorption coefficients for a normalized volume fraction of “1” and temperature of 500 K and 3000 K from PMC–LBL spectral database by drawing 1 × 106 random numbers

Grahic Jump Location
Fig. 7

Calculated total emission and ∇⋅ q for one-dimensional homogeneous gas mixtures

Grahic Jump Location
Fig. 8

Temperature, gas species, and soot volume fraction for the flame VII presented in Ref. [30]

Grahic Jump Location
Fig. 9

Calculated ∇⋅ q at z = 2 m and z = 4 m for the luminous flame

Grahic Jump Location
Fig. 10

Computation geometry and mesh for the gas turbine combustion burner

Grahic Jump Location
Fig. 11

Temperature profiles calculated without radiation (NoRad) feedback, with OT radiation and PMC–LBL radiation for the gas turbine combustion burner at pressures of 3 bar and 15 bar

Grahic Jump Location
Fig. 12

Temperature and NOx mass fraction near the gas turbine burner exit at 3 bar

Grahic Jump Location
Fig. 13

Temperature and NOx mass fraction near the gas turbine burner exit at 15 bar

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In