0
Research Papers: Jets, Wakes, and Impingment Cooling

Effect of Slot Jet Temperature on Impingement Heat Transfer Over a Heated Circular Cylinder

[+] Author and Article Information
Sharad Pachpute

Department of Mechanical Engineering,
IIT Delhi,
Hauz Khas,
New Delhi 110016, India

B. Premachandran

Department of Mechanical Engineering,
IIT Delhi,
Hauz Khas,
New Delhi 110016, India
e-mail: prem@mech.iitd.ac.in

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received April 20, 2018; final manuscript received October 31, 2018; published online December 13, 2018. Assoc. Editor: Amy Fleischer.

J. Heat Transfer 141(2), 022201 (Dec 13, 2018) (13 pages) Paper No: HT-18-1242; doi: 10.1115/1.4041958 History: Received April 20, 2018; Revised October 31, 2018

In this paper, heat transfer and effectiveness of a turbulent slot jet impinging over a heated circular cylinder have been investigated numerically by varying the ratio of jet temperature to the ambient temperature, Θj = Tj/Tamp, from 0.7 to 1.2. In all cases, the ambient temperature (Tamb) is assumed to be constant (300 K). The Reynolds number defined based on the average nozzle exit velocity, the diameter of the cylindrical target (D), and properties at the nozzle exit temperature, ReD=ρVD/μ is varied from 6000 to 20,000. The ratio of cylinder diameter to the slot width, D/S = 5.5, 8.5, and 17 are considered and the nondimensional distance from the nozzle exit to the cylinder, H/S is varied in the range of 2 ≤ H/S ≤ 12. The v2¯f turbulence model was used for numerical simulations. Numerical results reveal that the local Nusselt number is found to be higher at the stagnation point in the case of cold jet impingement at Θj = 0.7. The local heat transfer at the rear side of the cylinder is 8–18% less as compared to that of Θj = 1.0 for ReD = 6000. The local effectiveness calculated over a circular cylinder strongly depends on H/S and D/S. Based on the parametric study, a correlation has been provided for the local effectiveness at the stagnation point.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Martin, H. , 1977, “ Heat and Mass Transfer Between Impinging Gas Jet and Solid Surfaces,” Adv. Heat Transfer, 13, pp. 1–60. [CrossRef]
Hrycak, P. , 1981, “ Heat Transfer From Impinging Jets: A Literature Review,” New Jersey Institute of Technology, Newark, NJ, No. AFWAL-TR-81-3054.
Downs, S. J. , and James, E. H. , 1987, “ Jet Impingement Heat Transfer—A Literature Survey,” ASME Paper No. 87-H-35.
Jambunathan, K. , Lai, E. , Moss, M. A. , and Button, B. L. , 1992, “ A Review of Heat Transfer Data for Single Circular Jet Impingement,” Int. J. Heat Fluid Flow, 13, pp. 106–115. [CrossRef]
Viskanta, R. , 1993, “ Heat Transfer to Impinging Isothermal Gas and Flame Jets,” Exp. Therm. Fluid Sci., 6, pp. 111–134. [CrossRef]
Hollworth, B. R. , and Wilson, S. I. , 1984, “ Entrainment Effects on Impingement Heat Transfer—Part I: Measurements of Heated Jet Velocity and Temperature Distributions and Recovery Temperatures on Target Surface,” ASME J. Heat Transfer, 106(4), pp. 797–803. [CrossRef]
Hollworth, B. R. , and Gero, L. R. , 1985, “ Entrainment Effects on Impingement Heat Transfer—Part II: Local Heat Transfer Measurements,” ASME J. Heat Transfer, 107(4), pp. 910–915. [CrossRef]
Goldstein, R. J. , Sobolik, K. A. , and Seol, W. S. , 1990, “ Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface,” ASME J. Heat Transfer, 112(3), pp. 608–611. [CrossRef]
Baughn, J. W. , Hechanova, A. E. , and Xiaojun, Y. , 1991, “ An Experimental Study of Entrainment Effects on the Heat Transfer From a Flat Surface to a Heated Circular Impinging Jet,” ASME Int. J. Heat Transfer, 113(4), pp. 1023–1025. [CrossRef]
San, J. Y. , Huang, C. , and Shu, M. H. , 1997, “ Impingement Cooling of a Confined Circular Air Jet,” Int. J. Heat Mass Transfer, 40(6), pp. 1355–1364. [CrossRef]
Fenot, M. , Vullierme, J. J. , and Dorignac, E. , 2005, “ Heat Transfer Measurement of Jet Impingement With High Injection Temperature,” C. R. Mec., 333, pp. 778–782. [CrossRef]
Fenot, M. , Vullierme, J. J. , and Dorignac, E. , 2005, “ Local Heat Transfer Due to Several Configurations of Circular Air Jets Impinging on a Flat Plate With and Without Semi-Confinement,” Int. J. Therm. Sci., 44(7), pp. 665–675. [CrossRef]
Sagot, B. , Antonini, G. , Christgen, A. , and Buron, F. , 2008, “ Jet Impingement Heat Transfer on a Flat Plate at a Constant Wall Temperature,” Int. J. Therm. Sci., 47(12), pp. 1610–1619. [CrossRef]
Vinze, R. , Chandel, S. , Limaye, M. D. , and Prabhu, S. V. , 2016, “ Influence of Jet Temperature and Nozzle Shape on the Heat Transfer Distribution Between a Smooth Plate and Impinging Air Jets,” Int. J. Therm. Sci., 99, pp. 136–151. [CrossRef]
Trinh, X. T. , Fénot, M. , and Dorignac, E. , 2016, “ The Effect of Nozzle Geometry on Local Convective Heat Transfer to Unconfined Impinging Air Jets,” Exp. Therm. Fluid Sci., 70, pp. 1–16. [CrossRef]
Zhou, T. , Zu, D. , Chen, J. , Cao, C. , and Ye, T. , 2016, “ Numerical Analysis of Turbulent Round Jet Impingement Heat Transfer at High Temperature Difference,” App. Therm. Eng., 100, pp. 55–61. [CrossRef]
Jensen, M. V. , and Walther Jens, H. , 2013, “ Numerical Analysis of Jet Impingement Heat Transfer at High Jet Reynolds Number and Large Temperature Difference,” Heat Transfer Eng., 34(10), pp. 801–809. [CrossRef]
Gori, F. , and Bossi, L. , 2000, “ On the Cooling Effect of an Air Jet Along the Surface of a Cylinder,” Int. J. Heat Mass Transfer, 27(5), pp. 667–676. [CrossRef]
Gori, F. , and Bossi, L. , 2003, “ Optimal Slot Height in the Jet Cooling of a Circular Cylinder,” Appl. Therm. Eng., 23(7), pp. 859–870. [CrossRef]
McDaniel, C. S. , and Webb, B. W. , 2000, “ Slot Jet Impingement Heat Transfer From Circular Cylinders,” Int. J. Heat Mass Transfer, 43(11), pp. 1975–1985. [CrossRef]
Zuckerman, N. , and Lior, N. , 2006, “ Jet Impingement Heat Transfer: Physics, Correlations and Numerical Modeling,” Int. J. Heat Fluid Flow, 39, pp. 106–115.
Singh, K. , and Singh, R. P. , 2008, “ Air Impingement Cooling of Cylindrical Objects Using Slot Jets,” Food Engineering: Integrated Approaches (Food Engineering Series, Vol. 5), 1st ed., Springer, New York, pp. 89–104.
Olsson, E. E. M. , Ahrne, L. M. , and Tragardh, A. C. , 2004, “ Heat Transfer From a Slot Air Jet Impinging on a Circular Cylinder,” J. Food Eng., 63(4), pp. 393–401. [CrossRef]
Nitin, N. , Gadiraju, R. P. , and Karwe, M. V. , 2006, “ Conjugate Heat Transfer Associated With a Turbulent Hot Air Jet Impinging on a Cylindrical Object,” J. Food Proc. Eng., 29(4), pp. 386–399. [CrossRef]
Dirita, C. , Bonis, M. V. D. , and Ruocco, G. , 2005, “ Analysis of Food Cooling by Jet Impingement, Including Inherent Conduction,” J. Food Eng., 81(1), pp. 12–20. [CrossRef]
Chan, T. L. , Leung, C. W. , Jambunathan, K. , Ashforth-Forst, S. , Zhou, Y. , and Liu, M. H. , 2002, “ Heat Transfer Characteristics of a Slot Jet Impinging on a Semi-Circular Convex Surface,” Int. J. Heat Mass Transfer, 45(5), pp. 993–1006. [CrossRef]
Fenot, M. , Dorignac, E. , and Vullierme, J. J. , 2008, “ An Experimental Study on Hot Round Jets Impinging a Concave Surface,” Int. J. Heat Fluid Flow, 29(4), pp. 945–956. [CrossRef]
Yang, Y. T. , and Hwang, C. H. , 2004, “ Numerical Simulations on the Hydrodynamics of a Turbulent Slot Jet Impinging on a Semi-Cylindrical Convex Surface,” Numer. Heat Transfer, Part A, 46(10), pp. 995–1008. [CrossRef]
Guan, T. , Zhang, J. , and Shan, Y. , 2017, “ Conjugate Heat Transfer on Leading Edge of a Conical Wall Subjected to External Cold Flow and Internal Hot Jet Impingement From Chevron Nozzle—Part 2: Numerical Analysis,” Int. J. Heat Transfer, 106, pp. 339–355. [CrossRef]
Obot, N. Y. , Mujumdar, A. S. , and Douglas, W. J. M. , 1982, “ Effect of Semi-Confinement on Impingement Heat Transfer,” Seventh International Heat Transfer Conference, Munchen, Germany, Sept. 6–10, pp. 395–400.
Behania, M. , Pareneix, S. , Shabany, Y. , and Durbin, P. A. , 1999, “ Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets,” Int. J. Heat Fluid Flow, 20(1), pp. 1–9. [CrossRef]
Sahoo, D. , and Sharif, M. A. R. , 2004, “ Mixed Convective Cooling of an Isothermal Hot Surface by Confined Slot Jet Impingement,” Numer. Heat Transfer, Part A, 45(9), pp. 887–909. [CrossRef]
Bayder, E. , and Ozmen, Y. , 2005, “ An Experimental and Numerical Investigation on a Confined Impinging Air Jet at High Reynolds Numbers,” App. Therm. Eng., 25, pp. 409–421. [CrossRef]
Tzeng, P. Y. , Soong, C. Y. , and Hsieh, C. D. , 1999, “ Numerical Investigations of Heat Transfer Under Confined Impinging Turbulent Slot Jets,” Numer. Heat Transfer, Part A, 35(8), pp. 903–924. [CrossRef]
Qiu, S. , Xu, P. , Geng, L. , Mujumdar, A. S. , Jiang, Z. , and Yang, J. , 2017, “ Enhanced Heat Transfer Characteristics of Conjugated Air Jet Impingement on a Finned Heat Sink,” Therm. Sci., 21(1), pp. 279–288. [CrossRef]
Imraan, M. , and Sharma, R. N. , 2009, “ Jet Impingement Heat Transfer in a Frost-Fee Refrigerator: The Influence of Confinement,” Int. J. Refrig., 32(3), pp. 515–523. [CrossRef]
Shi, Y. , Mujumdar, A. , and Ray, M. B. , 2004, “ Effect of Large Temperature Difference on Impingement Heat Transfer Under a Round Turbulent Jet,” Int. Commun. Heat Mass Transfer, 31(2), pp. 251–260. [CrossRef]
Tawfek, A. A. , 1999, “ Heat Transfer Due to a Round Jet Impinging Normal to a Circular Cylinder,” Heat Mass Transfer, 35(4), pp. 327–333. [CrossRef]
Singh, D. , Premachandran, B. , and Kohli, S. , 2013, “ Numerical Simulation of the Jet Impingement Cooling of a Circular Cylinder,” Numer. Heat Transfer, Part A, 64(2), pp. 153–185. [CrossRef]
Singh, D. , Premachandran, B. , and Kohli, S. , 2015, “ Circular Air Jet Impingement Cooling of a Circular Cylinder With Flow Confinement,” Int. J. Heat Mass Transfer, 91, pp. 969–989. [CrossRef]
Pachpute, S. , and Premachandran, B. , 2017, “ Experimental and Numerical Investigation of Slot Jet Impingement With and Without a Semicircular Confinement,” Int. J. Heat Mass Transfer, 114, pp. 866–890. [CrossRef]
Pachpute, S. , and Premachandran, B. , 2018, “ Slot Air Jet Impingement Cooling Over a Heated Circular Cylinder With and Without a Confinement,” App. Therm. Eng., 132, pp. 352–367. [CrossRef]
Favre, A. , 1964, The Mechanics of Turbulence, Gordon and Breach, New York.
Lien, F. S. , and Kalitzin, G. , 2001, “ Computations of Transonic Flow With the v ′ 2 ¯ − f Turbulence Model,” Int. J. Heat Fluid Flow, 22(1), pp. 53–61. [CrossRef]
Davidson, L. , Nielsen, P. , and Sveningsson, A. , 2003, “ Modifications of the v ′ 2 ¯ − f Model for Computing the Flow in a 3D Wall Jet,” International Symposium on Turbulence, Heat Mass Transfer, Antalya, Turkey, Oct. 12–17, pp. 577–584.
Behania, M. , Parneix, S. , and Durbin, P. A. , 1998, “ Prediction of Heat Transfer in an Axisymmetric Turbulent Jet Impinging on the Flat Plate,” Int. J. Heat Fluid Flow, 41(12), pp. 1845–1855.
Gautner, J. W. , Livingwood, J. N. B. , and Hrycak, P. , 1970, “ Survey of Literature of Flow Characteristics of a Single Turbulent Jet, Impinging on a Flat Surface,” National Aeronautics and Space Administration, Washington, DC, Report No. TN D-5652. https://ntrs.nasa.gov/search.jsp?R=19700009658
Chan, T. L. , Zhou, Y. , Liu, M. H. , and Leung, C. W. , 2003, “ Mean Flow and Turbulence Measurements of the Impingement Wall Jet on a Semi-Circular Convex Surface,” Exp. Fluids, 34(1), pp. 140–149. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic illustration of slot jet impingement over a circular cylinder

Grahic Jump Location
Fig. 2

Two-dimensional computational domain used from numerical simulation of a slot impingement over the circular cylinder

Grahic Jump Location
Fig. 3

Effect of temperature ratio (Θj) on the jet centerline velocity at D/S = 8.5: (a) ReD = 6000, H/S = 2, (b) ReD = 20,000, H/S = 2, (c) ReD = 6000, H/S = 8, (d) ReD = 20,000, H/S = 8, (e) ReD = 6000, H/S = 12, and (f) ReD = 20,000, H/S = 12

Grahic Jump Location
Fig. 4

Effect of Θj on the jet centerline temperature at D/S = 8.5: (a) ReD = 6000, H/S = 2, (b) ReD = 20,000, H/S = 2, (c) ReD = 6000, H/S = 8, (d) ReD = 20,000, H/S = 8, (e) ReD = 6000, H/S = 12, and (f) ReD = 20,000, H/S = 12

Grahic Jump Location
Fig. 5

Effect of temperature ratio (Θj) on the stagnation Nusselt number at D/S = 8.5: (a) H/S = 2 and (b) H/S = 8

Grahic Jump Location
Fig. 6

Effect of temperatures ratio (Θj) on the local Nusselt number at D/S = 8.5: (a) ReD = 6000, H/S = 2, (b) ReD = 20,000, H/S = 2, (c) ReD = 6000, H/S = 8, and (d) ReD = 20,000, H/S = 8

Grahic Jump Location
Fig. 7

Effect of temperature ratio (Θj) on the local effectiveness of the cylinder at D/S = 8.5: (a) ReD = 6000, H/S = 2, (b) ReD = 20,000, H/S = 2, (c) ReD = 6000, H/S = 8, and (d) ReD = 20,000, H/S = 8

Grahic Jump Location
Fig. 8

Effect of slot width (D/S) on the dimensionless jet center line velocity at H/S = 12: (a) ReD = 6000, Θj = 1, (b) ReD = 20,000, Θj = 1, (c) ReD = 6000, Θj = 1.2, (d) ReD = 20,000, Θj = 1.2, (e) ReD = 6000, Θj = 0.7, and (f) ReD = 20,000, Θj = 0.7

Grahic Jump Location
Fig. 9

Effect of slot width (D/S) on the dimensionless jet center line temperature at H/S = 12: (a) ReD = 6000, Θj = 1.2, (b) ReD = 20,000, Θj = 1.2, (c) ReD = 6000, Θj = 0.7, and (d) ReD = 20,000, Θj = 0.7

Grahic Jump Location
Fig. 10

Effect of Θj on the local Nusselt number distribution of the cylinder at H/S = 2: (a) ReD = 6000, D/S = 5.5, (b) ReD = 20,000, D/S = 5.5, (c) ReD = 6000, D/S = 17, and (d) ReD = 20,000, D/S = 17

Grahic Jump Location
Fig. 11

Effect of slot width (D/S) on the local effectiveness of the cylinder at ReD = 20,000: (a) H/S = 2, Θj = 1.2, (b) H/S = 12, Θj = 1.2, (c) H/S = 2, Θj = 0.7, and (d) H/S = 12, Θj = 0.7

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In