Lauga,
E.
,
Brenner,
M. P.
, and
Stone,
H. A.
, 2007, “
Microfluidics: The No-Slip Boundary Condition,” Springer Handbook of Experimental Fluid Mechanics, C. Tropea, A. L. Yarin, and J. F. Foss, eds., Springer, Berlin, Chap. 19.

Denn,
M. M.
, 1990, “
Issues in Viscoelastic Fluid Mechanics,” Annu. Rev. Fluid Mech.,
22(1), pp. 13–32.

[CrossRef]
Gad-el Hak,
M.
, 1999, “
The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture,” ASME J. Fluids Eng.,
121, pp. 5–33.

[CrossRef]
Nguyen,
N.-T.
, and
Wereley,
S. T.
, 2006, Fundamentals and Applications of Microfluidics (Integrated Microsystems Series), 2nd ed.,
Artech House,
Norwood, MA.

Shu,
J.-J.
,
Teo,
J. B. M.
, and
Chan,
W. K.
, 2017, “
Fluid Velocity Slip and Temperature Jump at a Solid Surface,” ASME Appl. Mech. Rev.,
69(2), p. 020801.

[CrossRef]
Denn,
M. M.
, 2001, “
Extrusion Instabilities and Wall Slip,” Annu. Rev. Fluid Mech.,
33(1), pp. 265–287.

[CrossRef]
Kalyon,
D. M.
, 2005, “
Apparent Slip and Viscoplasticity of Concentrated Suspensions,” J. Rheol.,
49(3), pp. 621–640.

[CrossRef]
Thompson,
P. A.
, and
Troian,
S. M.
, 1997, “
A General Boundary Condition for Liquid Flow at Solid Surfaces,” Nature,
389(6649), pp. 360–362.

[CrossRef]
Navier,
C. L. M. H.
, 1823, “
Mémoire sur les lois du Mouvement des Fluides,” Mémoire de l'Académie Royale des Sci. de l'Institut de France,
6, pp. 389–440.

Cloitre,
M.
, and
Bonnecaze,
R. T.
, 2017, “
A Review on Wall Slip in High Solid Dispersions,” Rheol. Acta,
56(3), pp. 283–305.

[CrossRef]
Matthews,
M. T.
, and
Hill,
J. M.
, 2007, “
Newtonian Flow With Nonlinear Navier Boundary Condition,” Acta Mech.,
191(3–4), pp. 195–217.

[CrossRef]
Bird,
R. B.
, 1959, “
Unsteady Pseudoplastic Flow Near a Moving Wall,” AIChE J.,
5(4), pp. 565–566.

[CrossRef]
Acrivos,
A.
,
Shah,
M. J.
, and
Petersen,
E. E.
, 1960, “
Momentum and Heat Transfer in Laminar Boundary-Layer Flows of Non-Newtonian Fluids Past External Surfaces,” AIChE J.,
6(2), pp. 312–317.

[CrossRef]
Yan,
Y.
, and
Koplik,
J.
, 2008, “
Flow of Power-Law Fluids in Self-Affine Fracture Channels,” Phys. Rev. E,
77(3), p. 036315.

[CrossRef]
Bird,
R. B.
, 1976, “
Useful Non-Newtonian Models,” Annu. Rev. Fluid Mech.,
8(1), pp. 13–34.

[CrossRef]
Ferrás,
L. L.
,
Nóbrega,
J. M.
, and
Pinho,
F. T.
, 2012, “
Analytical Solutions for Newtonian and Inelastic Non-Newtonian Flows With Wall Slip,” J. Non-Newtonian Fluid Mech.,
175–176, pp. 76–88.

[CrossRef]
Pritchard,
D.
,
McArdle,
C. R.
, and
Wilson,
S. K.
, 2011, “
The Stokes Boundary Layer for a Power-Law Fluid,” J. Non-Newtonian Fluid Mech.,
166(12–13), pp. 745–753.

[CrossRef]
Wei,
D.
, and
Jordan,
P. M.
, 2013, “
A Note on Acoustic Propagation in Power-Law Fluids: Compact Kinks, mild Discontinuities, and a Connection to Finite-Scale Theory,” Int. J. Non-Linear Mech.,
48, pp. 72–77.

[CrossRef]
Garimella,
S. V.
, and
Sobhan,
C. B.
, 2003, “
Transport in Microchannels—A Critical Review,” Annu. Rev. Heat Transfer,
13(13), pp. 1–50.

[CrossRef]
Yovanovich,
M. M.
, and
Khan,
W. A.
, 2015, “
Friction and Heat Transfer in Liquid and Gas Flows in Micro- and Nanochannels,” Advances in Heat Transfer, Vol.
47,
E. M. Sparrow
,
J. P. Abraham
, and
J. M. Gorman
, eds.,
Elsevier,
Waltham, MA, pp. 203–307.

Barbati,
A. C.
,
Desroches,
J.
,
Robisson,
A.
, and
McKinley,
G. H.
, 2016, “
Complex Fluids and Hydraulic Fracturing,” Annu. Rev. Chem. Biomol. Eng.,
7, pp. 415–453.

[CrossRef] [PubMed]
Barletta,
A.
, 1996, “
Fully Developed Laminar Forced Convection in Circular Ducts for Power Law Fluids With Viscous Dissipation,” Int. J. Heat Mass Transfer,
40(1), pp. 15–26.

[CrossRef]
Cruz,
D. A.
,
Coelho,
P. M.
, and
Alves,
M. A.
, 2012, “
A Simplified Method for Calculating Heat Transfer Coefficients and Friction Factors in Laminar Pipe Flow of Non-Newtonian Fluids,” ASME J. Heat Transfer,
134(9), p. 091703.

[CrossRef]
Jambal,
O.
,
Shigechi,
T.
,
Davaa,
G.
, and
Momoki,
S.
, 2005, “
Effects of Viscous Dissipation and Fluid Axial Heat Conduction on Heat Transfer for Non-Newtonian Fluids in Ducts With Uniform Wall Temperature—Part II: Annular Ducts,” Int. Commun. Heat Mass Transfer,
32(9), pp. 1174–1183.

[CrossRef]
Tso,
C. P.
,
Sheela-Francisca,
J.
, and
Hung,
Y.-M.
, 2010, “
Viscous Dissipation Effects of Power-Law Fluid Flow Within Parallel Plates With Constant Heat Fluxes,” J. Non-Newtonian Fluid Mech.,
165(11–12), pp. 625–630.

[CrossRef]
Sheela-Francisca,
J.
,
Tso,
C. P.
,
Hung,
Y. M.
, and
Rilling,
D.
, 2012, “
Heat Transfer on Asymmetric Thermal Viscous Dissipative Couette–Poiseuille Flow of Pseudo-Plastic Fluids,” J. Non-Newtonian Fluid Mech.,
169–170(2), pp. 42–53.

[CrossRef]
Straughan,
B.
, 2015, Convection With Local Thermal Non-Equilibrium and Microfluidic Effects (Advances in Mechanics and Mathematics), Vol.
32,
Springer International Publishing,
Cham, Switzerland.

Kaushik,
P.
,
Mondal,
P. K.
,
Pati,
S.
, and
Chakraborty,
S.
, 2017, “
Heat Transfer and Entropy Generation Characteristics of a Non-Newtonian Fluid Squeezed and Extruded Between Two Parallel Plates,” ASME J. Heat Transfer,
139(2), p. 022004.

[CrossRef]
Sefid,
M.
, and
Izadpanah,
E.
, 2013, “
Developing and Fully Developed Non-Newtonian Fluid Flow and Heat Transfer Through Concentric Annuli,” ASME J. Heat Transfer,
135(7), p. 071702.

[CrossRef]
Bejan,
A.
, 1999, “
The Method of Entropy Generation Minimization,” Energy and the Environment (Environmental Science and Technology Library), Vol.
15,
A. Bejan
,
P. Vadász
, and
D. G. Kröger
, eds.,
Springer,
Dordrecht, The Netherlands, pp. 11–22.

Mahmud,
S.
, and
Fraser,
R. A.
, 2002, “
Thermodynamic Analysis of Flow and Heat Transfer Inside Channel With Two Parallel Plates,” Exergy,
2(3), pp. 140–146.

[CrossRef]
Mahmud,
S.
, and
Fraser,
R. A.
, 2006, “
Second Law Analysis of Forced Convection in a Circular Duct for Non-Newtonian Fluids,” Energy,
31(12), pp. 2226–2244.

[CrossRef]
Hung,
Y. M.
, 2008, “
Viscous Dissipation Effect on Entropy Generation for Non-Newtonian Fluids in Microchannels,” Int. Commun. Heat Mass Transfer,
35(9), pp. 1125–1129.

[CrossRef]
Shojaeian,
M.
, and
Koşar,
A.
, 2014, “
Convective Heat Transfer and Entropy Generation Analysis on Newtonian and Non-Newtonian Fluid Flows Between Parallel-Plates Under Slip Boundary Conditions,” Int. J. Heat Mass Transfer,
70(3), pp. 664–673.

[CrossRef]
Anand,
V.
, 2014, “
Slip Law Effects on Heat Transfer and Entropy Generation of Pressure Driven Flow of a Power Law Fluid in a Microchannel Under Uniform Heat Flux Boundary Condition,” Energy,
76, pp. 716–732.

[CrossRef]
Goswami,
P.
,
Mondal,
P.
,
Datta,
A.
, and
Chakraborty,
S.
, 2016, “
Entropy Generation Minimization in an Electroosmotic Flow of Non-Newtonian Fluid: Effect of Conjugate Heat Transfer,” ASME J. Heat Transfer,
138(5), p. 051704.

[CrossRef]
Mondal, P. K.
, 2014, “
Entropy Analysis for the Couette Flow of Non-Newtonian Fluids Between Asymmetrically Heated Parallel Plates: Effect of Applied Pressure Gradient,” Phys. Scr.,
89(12), p. 125003.

Vayssade,
A.-L.
,
Lee,
C.
,
Terriac,
E.
,
Monti,
F.
,
Cloitre,
M.
, and
Tabeling,
P.
, 2014, “
Dynamical Role of Slip Heterogeneities in Confined Flows,” Phys. Rev. E,
89(5), p. 052309.

[CrossRef]
Panaseti,
P.
,
Vayssade,
A.-L.
,
Georgiou,
G. C.
, and
Cloitre,
M.
, 2017, “
Confined Viscoplastic Flows With Heterogeneous Wall Slip,” Rheol. Acta,
56(6), pp. 539–553.

[CrossRef]
Stone,
H. A.
, 2017, “
Fundamentals of Fluid Dynamics With an Introduction to the Importance of Interfaces,” Soft Interfaces (Lecture Notes of the Les Houches Summer School), Vol.
98,
L. Bocquet
,
D. Quéré
,
T. A. Witten
, and
L. F. Cugliandolo
, eds.,
Oxford University Press, New York, pp. 3–76.

Leal,
L. G.
, 2007, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes,
Cambridge University Press,
Cambridge, UK.

Chhabra,
R. P.
, 2010, “
Non-Newtonian Fluids: An Introduction,” Rheology of Complex Fluids,
J. Murali Krishnan
,
A. P. Deshpande
, and
P. B. Sunil Kumar
, eds.,
Springer Science+Business Media,
New York, pp. 3–34.

Bird,
R. B.
,
Armstrong,
R. C.
, and
Hassager,
O.
, 1987, Dynamics of Polymeric Liquids, 2nd ed., Vol.
1,
Wiley,
New York.

Koo,
J.
, and
Kleinstreuer,
C.
, 2004, “
Viscous Dissipation Effects in Microtubes and Microchannels,” Int. J. Heat Mass Transfer,
47(14–16), pp. 3159–3169.

[CrossRef]
Bergman,
T. L.
,
Lavine,
A. S.
,
Incropera,
F. P.
, and
DeWitt,
D. P.
, 2011, Fundamentals of Heat and Mass Transfer, 7th ed.,
Wiley, New York.

Paoletti,
S.
,
Rispoli,
F.
, and
Sciubba,
E.
, 1989, “
Calculation of Exergetic Losses in Compact Heat Exchanger Passages,” Analysis and Design of Energy Systems: Fundamentals and Mathematical Techniques,
R. A. Bajura
,
H. N. Shapiro
, and
J. R. Zaworksi
, eds.,
American Society of Mechanical Engineers, New York, pp. 21–29.

Petrescu,
S.
, 1994, “
Comments on ‘The Optimal Spacing of Parallel Plates Cooled by Forced Convection,’” Int. J. Heat Mass Transfer,
37(8), p. 1283.

[CrossRef]
Jones,
E.
,
Oliphant,
T.
, and
Peterson,
P.
, 2001, “
SciPy: Open Source Scientific Tools for Python,” SciPY, accessed Dec. 12, 2018,

http://www.scipy.org
Panton,
R. L.
, 2013, Incompressible Flow, 4th ed.,
Wiley,
Hoboken, NJ.

Blasius,
H.
, 1908, “
Grenzschichten in Flüssigkeiten mit kleiner Reibung,” Z. Math. Phys.,
56, pp. 1–37.

Pohlhausen,
E.
, 1921, “
Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung,” Z. Angew. Math. Mech.,
1(2), pp. 115–121.

[CrossRef]
Bejan,
A.
, 2013, Convection Heat Transfer, 4th ed.,
Wiley,
Hoboken, NJ.

Illingworth,
J. B.
,
Hills,
N. J.
, and
Barnes,
C. J.
, 2005, “
3D Fluid–Solid Heat Transfer Coupling of an Aero Engine Pre-Swirl System,” ASME Paper No. GT2005-68939.

Asako,
Y.
, and
Hong,
C.
, 2017, “
On Temperature Jump Condition for Slip Flow in a Microchannel With Constant Wall Temperature,” ASME J. Heat Transfer,
139(7), p. 072402.

[CrossRef]
Hong,
C.
, and
Asako,
Y.
, 2010, “
Some Considerations on Thermal Boundary Condition of Slip Flow,” Int. J. Heat Mass Transfer,
53(15–16), pp. 3075–3079.

[CrossRef]
Sparrow,
E. M.
, and
Lin,
S. H.
, 1962, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions,” ASME J. Heat Transfer,
84(4), pp. 363–369.

[CrossRef]
Smoluchowski von Smolan,
M.
, 1898, “
Ueber Wärmeleitung in verdünnten Gasen,” Ann. Phys.,
300(1), pp. 101–130.

[CrossRef]