0
RESEARCH PAPERS

Pressure Drop and Heat Transfer in a Duct With Triangular Cross Section

[+] Author and Article Information
E. R. G. Eckert, T. F. Irvine

University of Minnesota, Minneapolis, Minn.

J. Heat Transfer 82(2), 125-136 (May 01, 1960) (12 pages) doi:10.1115/1.3679891 History: Received May 11, 1959

Abstract

Friction factors have been measured for a duct whose cross section has the shape of an isosceles triangle with a side ratio 5 to 1 in the fully developed flow region for laminar, transitional, and turbulent conditions. In addition, local and average heat-transfer coefficients and the temperature field in the duct wall have been determined for the condition of constant heat generation per unit volume of the duct walls. Friction factors in laminar flow agreed well with analytical predictions. In the turbulent flow range they were by 20 per cent lower than values calculated from relations for a round tube with the use of the “hydraulic diameter.” Heat-transfer coefficients averaged over the circumference of the duct were only half as large as values calculated from round tube relations in the Reynolds number range from 4300 to 24,000. The measurements also revealed that thermal starting lengths were in excess of 100 diameters. In round tubes a length of 10 to 20 diameters has been found sufficient to develop the temperature field.

Copyright © 1960 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In