Entrance Effects in a Two-Phase Slug Flow

[+] Author and Article Information
R. Moissis, P. Griffith

Massachusetts Institute of Technology, Cambridge, Mass.

J. Heat Transfer 84(1), 29-38 (Feb 01, 1962) (10 pages) doi:10.1115/1.3684284 History: Received March 14, 1961


This paper describes quantitatively one stage of the flow development process in equipment working with two-phase mixtures. The kinetics of a Taylor bubble, as it rises behind a series of other bubbles in a gas-liquid slug flow, have been determined. The rise velocity of a bubble is expressed as a function of separation distance from the bubble ahead of it. Using this information, the pattern of development of bubbles which initially enter a tube at regular intervals is determined by means of finite difference calculations. The density and, to a first approximation the pressure drop, of the developing flow are then calculated from continuity considerations. The density distribution in the entrance region is found to be a function of flow rates of the two phases, of distance from the inlet, and of initial bubble size. Density calculated by the present theory is compared with experimental measurements by the present and other investigators. Theory and experiments are in good agreement.

Copyright © 1962 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In