0
RESEARCH PAPERS

Heat Transfer by Natural Convection in Liquids Confined by Two Parallel Plates Which Are Inclined at Various Angles With Respect to the Horizontal

[+] Author and Article Information
D. Dropkin, E. Somerscales

Department of Thermal Engineering, Cornell University, Ithaca, N. Y.

J. Heat Transfer 87(1), 77-82 (Feb 01, 1965) (6 pages) doi:10.1115/1.3689057 History: Received May 08, 1964

Abstract

This paper presents results of an experimental investigation of convective heat transfer in liquids confined by two parallel plates and inclined at various angles with respect to the horizontal. The experiments covered a range of Rayleigh numbers between 5(10)4 and 7.17(10)8 , and Prandtl numbers between 0.02 and 11,560. Tests were made in rectangular and circular containers having copper plates and insulating walls. The liquids used were water, silicone oils, and mercury. The test results indicate that the heat transfer coefficients for all liquids investigated at the various angles, from horizontal to vertical, may be determined from the relationship

Nu = C(Ra)1/3(Pr)0.074
The constant, C, is a function of the angle of inclination. It varies from C = 0.069 for the horizontal case when heated from below to C = 0.049 for the vertical case. For the test cells used, no effect on the Nusselt number had been detected for the vertical case by the change of the ratio of height of cell to distance between plates. The ratio for these tests was varied from 4.41 to 16.56.

Copyright © 1965 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In