0
RESEARCH PAPERS

Turbulent Heat Transfer in the Separated, Reattached, and Redevelopment Regions of a Circular Tube

[+] Author and Article Information
K. M. Krall, E. M. Sparrow

Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Heat Transfer 88(1), 131-136 (Feb 01, 1966) (6 pages) doi:10.1115/1.3691456 History: Received July 22, 1965

Abstract

Experiments were performed to determine the effect of flow separation on the heat-transfer characteristics of a turbulent pipe flow. The flow separation was induced by an orifice situated at the inlet of an electrically heated circular tube. The degree of flow separation was varied by employing orifices of various bore diameters. Water was the working fluid. The Reynolds number and the Prandtl number, respectively, ranged from 10,000 to 130,000 and from 3 to 6. The measurements show that the local heat-transfer coefficients in the separated, reattached, and redevelopment regions are several times as large as those for a fully developed flow. For instance, at the point of reattachment, the coefficients were 3 to 9 times greater than the corresponding fully developed values. In general, the increase of the heat-transfer coefficient owing to flow separation is accentuated as the Reynolds number decreases. The point of flow reattachment, which corresponds to a maximum in the distribution of the heat-transfer coefficient, was found to occur from 1.25 to 2.5 pipe dia from the onset of separation.

Copyright © 1966 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In