0
RESEARCH PAPERS

Heat-Transfer Effects on the Developing Laminar Flow Inside Vertical Tubes

[+] Author and Article Information
W. T. Lawrence

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

J. C. Chato

University of Illinois, Urbana, Ill.

J. Heat Transfer 88(2), 214-222 (May 01, 1966) (9 pages) doi:10.1115/1.3691518 History: Received July 12, 1965

Abstract

A numerical method was developed for the calculation of entrance flows in vertical tubes for the cases of upflow or downflow and constant wall heat flux or constant wall temperature. The solutions were in excellent agreement with experimental data obtained with water flowing upward in a vertical heated tube. The results show that both the density and the viscosity have to be treated as nonlinear functions of temperature. Consequently, for the constant heat flux condition, the velocity and temperature profiles constantly change and never reach “fully developed” states. The transition to turbulent flow was also studied. The experimental measurements demonstrated that the transition process depends on the developing velocity profiles. For the constant heat flux case, transition will always occur at some axial position. For a given entrance condition, the distance to transition is fixed by the fluid flow rate and the wall heat flux. For the experimental results, a tentative transition criterion was obtained, which depends only on the velocity profile shape, fluid viscosity, and the entrance Reynolds number.

Copyright © 1966 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In