An Interferometric Study of Mass Transfer From a Vertical Plate at Low Reynolds Numbers

[+] Author and Article Information
M. M. El-Wakil, G. E. Myers, R. J. Schilling

University of Wisconsin, Madison, Wis.

J. Heat Transfer 88(4), 399-406 (Nov 01, 1966) (8 pages) doi:10.1115/1.3691585 History: Received May 12, 1965; Revised November 29, 1965


Experimental concentration profiles in steady-state, two-component boundary layers formed by the evaporation of a volatile liquid from a porous vertical flat plate into a heated airstream were obtained by an interferometric technique. Tests were conducted with benzene and n-heptane as the evaporating fluids with airstream temperatures ranging from 70 to 94 F and airstream velocities ranging from 90 to 120 fpm. The Reynolds number range, based on the distance from the leading edge of the plate, was from 75 to 1800. It was experimentally observed that transition from laminar flow occurred at Reynolds numbers between 300 and 600. These values, much lower than generally reported in the literature for heat transfer alone, are believed to be related to the relatively thick boundary layers induced by mass transfer of the heavier-than-air fluid from the plate and the associated free-convection effects. While the flow was primarily forced convection, the experimental data indicated a strong natural-convection effect when compared with analytical predictions based on forced convection alone. This was due primarily to the mass transfer into the boundary layer. An attempt was made to analytically account for the effects of mass transfer and natural convection on the Sherwood-Reynolds numbers relationship by utilizing perturbation solutions for the analogous heat transfer problem. The trends shown by this analysis agreed with the experimental data in the laminar portion of the boundary layer. The absolute magnitudes, however, still differed significantly, showing that first-order perturbation solutions of the mass transfer and free-convection effects are inadequate and pointing to the need for more theoretical work.

Copyright © 1966 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In