0
RESEARCH PAPERS

Effects of Free-Stream Turbulence and Pressure Gradient on Flat-Plate Boundary-Layer Velocity Profiles and on Heat Transfer

[+] Author and Article Information
G. H. Junkhan, G. K. Serovy

Mechanical Engineering Department and Engineering Research Institute, Iowa State University, Ames, Iowa

J. Heat Transfer 89(2), 169-175 (May 01, 1967) (7 pages) doi:10.1115/1.3614346 History: Received February 22, 1965; Online August 25, 2011

Abstract

Experimental data indicating some effects of free-stream turbulence intensity on time-average boundary-layer velocity profiles and on heat transfer from a constant-temperature flat plate with a favorable pressure gradient are presented for local Reynolds numbers ranging from 4 × 104 to 4 × 105 and for free-stream turbulence intensities from 0.4 to 8.3 percent. It is concluded that, for the range of variables covered by the experiments: (a) The effect of free-stream turbulence intensity on heat transfer through the laminar boundary layer with a zero pressure gradient is negligible; (b) for a given Reynolds number, the local Nusselt number increases with increasing free-stream turbulence intensity when a pressure gradient is present, the boundary-layer profiles for these conditions changing with a variation in free-stream turbulence intensity; and (c) no increase in Nusselt number with increase in free-stream turbulence intensity occurs for turbulent boundary layers with a favorable pressure gradient.

Copyright © 1967 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In