0
RESEARCH PAPERS

Experiments on Turbulent Heat Transfer in a Tube With Circumferentially Varying Thermal Boundary Conditions

[+] Author and Article Information
A. W. Black, E. M. Sparrow

Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Heat Transfer 89(3), 258-268 (Aug 01, 1967) (11 pages) doi:10.1115/1.3614375 History: Received January 13, 1966; Online August 25, 2011

Abstract

An experimental investigation, supported by analysis, was performed to determine the heat transfer characteristics for turbulent flow in a circular tube with circumferentially varying wall temperature and wall heat flux. Air was the working fluid. The desired boundary conditions were achieved by electric heating within the wall of a tube whose thickness varied circumferentially. In this way, ratios of maximum-to-minimum wall heat flux as large as two were attained. Local heat transfer coefficients, deduced from the experimental data, display a circumferential variation that is substantially smaller than the heat flux variation. In general, lower heat transfer coefficients correspond to circumferential locations of greater heating, while higher coefficients correspond to locations of lesser heating. The predictions of prior analyses appear to overestimate the circumferential variation of the heat transfer coefficient. A specially designed probe was employed to measure the radial and circumferential temperature distributions within the flowing airstream. On the basis of these measurements, as well as from the heat transfer results, it is concluded that, in the neighborhood of the wall, the tangential turbulent diffusivity is greater than the radial turbulent diffusivity. The axial thermal development was found to be more rapid on the lesser-heated side of the tube than on the greater-heated side. Experimentally determined circumferential-average heat transfer coefficients agreed well with the predictions of analysis.

Copyright © 1967 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In