0
RESEARCH PAPERS

The Transition From Turbulent to Laminar Gas Flow in a Heated Pipe

[+] Author and Article Information
C. A. Bankston

Los Alamos Scientific Laboratory, Los Alamos, N. M.

J. Heat Transfer 92(4), 569-579 (Nov 01, 1970) (11 pages) doi:10.1115/1.3449726 History: Received May 16, 1969; Online August 11, 2010

Abstract

Experimental results are reported on the heat transfer and fluid friction of heated hydrogen and helium gas flows undergoing transition from turbulent to laminar flow in a circular tube. The entering Reynolds numbers range from 2350 to 12,500 and the nondimensional heat-flux parameter ranges from 0.0021 to 0.0061. Local heat-transfer coefficients and friction factors are obtained, and the flow transition, which is evident in these results, is verified at small heat fluxes by measuring directly the turbulence intensity at the center line with a hot-wire anemometer. At large heat fluxes, laminarization is found to occur at local bulk Reynolds numbers well in excess of the minimum number for fully turbulent adiabatic flow, and the resulting heat-transfer coefficients are much lower than those associated with fully turbulent flow at the same Reynolds number. The relation between laminarization in heated tubes and in severely accelerated external boundary layers is investigated and some similarities are noted. The acceleration and pressure-gradient parameters used to predict boundary-layer laminarization are modified for tube flow and used to correlate the initiation and completion of laminarization in the heated tube.

Copyright © 1970 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In