Axial Heat Conduction Effects in Forced Convection Along a Cylinder

[+] Author and Article Information
T. S. Chen, M. E. Lohman

Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, Mo.

J. Heat Transfer 97(2), 185-190 (May 01, 1975) (6 pages) doi:10.1115/1.3450339 History: Received August 12, 1974; Online August 11, 2010


An analytical study is performed to determine the effects of axial heat conduction and transverse curvature on laminar forced convective heat transfer of liquid metals along a circular cylinder. The flow and thermal boundary layers for this problem are nonsimilar, the non-similarity arising both from the transverse curvature ξ = (4/R)(νx/u∞ )1/2 of the cylindrical surface and from the axial heat conduction effect expressible as Ω = 1/Pex , where Pex is the local Peclet number. The governing equations are solved by the local nonsimilarity method in which all the terms in the conservation equations are retained and only terms in the derived subsidiary equations are selectively deleted according to the levels of truncation. Numerical results are presented for liquid metals having representative Prandtl numbers of 0.03, 0.008, and 0.003 over a wide range of ξ values from 0 (i.e., a flat plate) to 4.0 and Ω values from 0 (i.e., without axial heat conduction effect) to 0.20. The results indicate that the local surface heat transfer rate increases with an increase in the transverse curvature of the cylindrical surface, an increase in Prandtl number, and an increase in the axial heat conduction parameter or a decrease in Peclet number.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In