Prediction of Local and Integral Turbulent Transport Properties for Liquid-Metal Heat Transfer in Equilateral Triangular Rod Arrays

[+] Author and Article Information
H. Ramm, K. Johannsen

Institut für Kerntechnik, Technische Universität Berlin, Berlin, Germany

J. Heat Transfer 97(2), 238-243 (May 01, 1975) (6 pages) doi:10.1115/1.3450347 History: Received January 15, 1974; Online August 11, 2010


A theoretical method based on a phenomenological turbulence model has been applied to evaluate turbulent transport properties for liquid-metal heat transfer in bare equilateral triangular rod bundles. Results obtained for local distributions of thermal eddy diffusivity in the various directions are presented in terms of correlations. From a subsequent solution of the three-dimensional heat transfer problem between two characteristic interior subchannels under conditions characteristic for tracer-type mixing experiments, integral thermal mixing coefficients and thermal length scales have been evaluated. Results demonstrate that the basic concept of subchannel analysis treating molecular conduction and turbulent transport independently of each other tends to underestimate intersubchannel transport. The uncertainties which are involved in principal assumptions of the turbulence-model as well as in the available empirical results are discussed in some detail.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In