Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer

[+] Author and Article Information
T. E. Cooper, R. J. Field, J. F. Meyer

Department of Mechanical Engineering, Naval Postgraduate School, Monterey, Calif.

J. Heat Transfer 97(3), 442-450 (Aug 01, 1975) (9 pages) doi:10.1115/1.3450396 History: Received June 04, 1975; Online August 11, 2010


A thermographic technique is presented that allows visual determination of both qualitative and quantitative heat transfer and fluid flow information to be obtained on heated objects placed in forced convection environments. The technique employs cholesteric liquid crystals as the temperature sensing agent. The liquid crystals indicate temperature by exhibiting brilliant changes in color over discrete, reproducible temperature ranges. The technique has been used to quickly and easily obtain information on the variation of the Nusselt number on a right circular cylinder placed in a crossflow of air. In addition to yielding precise quantitative heat transfer information, the liquid crystal thermographic technique afforded the opportunity to visually observe the effects of flow separation, the separation bubble region, the turbulent boundary layer, and the turbulent wake on the surface temperature of the heated cylinder. The experimental results obtained using the liquid crystal thermographic technique are in close agreement with results obtained by other investigators who have used standard measuring techniques.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In