The Application of the Collocation Method Using Hermite Cubic Splines to Nonlinear Transient One-Dimensional Heat Conduction Problems

[+] Author and Article Information
T. C. Chawla, G. Leaf, W. L. Chen, M. A. Grolmes

Argonne National Laboratory, Argonne, Ill.

J. Heat Transfer 97(4), 562-569 (Nov 01, 1975) (8 pages) doi:10.1115/1.3450431 History: Received April 30, 1975; Online August 11, 2010


A collocation method for the solution of one-dimensional parabolic partial differential equations using Hermite splines as approximating functions and Gaussian quadrature points as collocation points is described. The method consists of expanding dependent variables in terms of piece-wise cubic Hermite splines in the space variable at each time step. The unknown coefficients in the expansion are obtained at every time step by requiring that the resultant differential equation be satisfied at a number of points (in particular at the Gaussian quadrature points) in the field equal to the number of unknown coefficients. This collocation procedure reduces the partial differential equation to a system of ordinary differential equations which is solved as an initial value problem using the steady-state solution as the initial condition. The method thus developed is applied to a two-region nonlinear transient heat conduction problem and compared with a finite-difference method. It is demonstrated that because of high-order accuracy only a small number of equations are needed to produce desirable accuracy. The method has the desirable characteristic of an analytical method in that it produces point values as against nodal values in the finite-difference scheme.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In