0
RESEARCH PAPERS

Influence of Pressure on Film Boiling Heat Transfer

[+] Author and Article Information
G. Hesse, E. M. Sparrow, R. J. Goldstein

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Heat Transfer 98(2), 166-172 (May 01, 1976) (7 pages) doi:10.1115/1.3450513 History: Received October 06, 1975; Online August 11, 2010

Abstract

Experiments on film boiling of carbon dioxide were performed covering the range of pressures from the triple point to the critical point. Measurements were also made at supercritical pressures. Three different heating wire sizes were employed with diameters of 0.0508, 0.1, and 0.4 mm. The boiling curves, plotted in terms of heat flux and temperature difference, were found to be pressure dependent, with a more marked dependence for smaller diameter heating wires. The role of pressure level was exhibited in greater detail in a presentation in which the heat transfer coefficient is plotted against pressure at fixed values of heat flux. The most rapid variations of the heat transfer coefficient with pressure occur in the neighborhoods of the triple and critical points, with relatively gradual variations in evidence in the intermediate range of pressures. The curves of heat transfer coefficient versus pressure take on minimum values at the triple and critical points. Nusselt numbers evaluated from the experimental data agree satisfactorily with available predictive equations. Photographs of the vapor separation patterns revealed that with increasing pressure, the bubble columns which break away from the vapor film successively evolve into vapor columns and vapor sheets. As the critical pressure is approached, the height of the sheet diminishes.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In