0
RESEARCH PAPERS

A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation

[+] Author and Article Information
R. L. Judd, K. S. Hwang

McMaster University, Hamilton, Ontario, Canada

J. Heat Transfer 98(4), 623-629 (Nov 01, 1976) (7 pages) doi:10.1115/1.3450610 History: Received June 23, 1976; Online August 11, 2010

Abstract

The results of an experimental investigation are presented in which dichloromethane (methylene chloride) boiling on a glass surface was studied using laser interferometry and high-speed photography. New data for active site density, frequency of bubble emission, and bubble departure radius were obtained in conjunction with measurements of the volume of microlayer evaporated from the film underlying the base of each bubble for various combinations of heat flux and subcooling. These results were used to support a model for predicting boiling heat flux incorporating microlayer evaporation, natural convection, and nucleate boiling mechanisms. Microlayer evaporation heat transfer is shown to represent a significant proportion of the total heat transfer for the range of heat flux and sub-cooling investigated.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In