0
RESEARCH PAPERS

Heat/Mass Transfer Characteristics for Flow in a Corrugated Wall Channel

[+] Author and Article Information
Leonardo Goldstein, E. M. Sparrow

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Heat Transfer 99(2), 187-195 (May 01, 1977) (9 pages) doi:10.1115/1.3450667 History: Received August 26, 1976; Online August 11, 2010

Abstract

Experiments based on the naphthalene sublimation technique were carried out to determine the local and average transfer characteristics for flow in a corrugated wall channel. The range of the experiments encompassed the laminar, transition, and low-Reynolds-number turbulent regimes. Local mass transfer measurements were made both in the spanwise (i.e., cross stream) and streamwise directions, and overall transfer rates were also determined. The experiments demonstrated the existence of a variety of complex transfer processes and related fluid flow phenomena. These included secondary flows and associated spanwise mass transfer variations, suppression of the secondary flow by counteracting centrifugal forces, and destruction of the secondary flow by the onset of turbulence. Flow separation on the leeward facets of the corrugated wall caused a sharp decrease in the local transfer rates, but relatively high transfer rates were in evidence in the reattachment region. In the laminar range, the average transfer coefficients for the corrugated wall channel were only moderately larger than those for a parallel-plate channel. On the other hand, in the low-Reynolds-number turbulent regime, the wall corrugations were responsible for an increase of nearly a factor of three in the average coefficient compared with the smooth wall channel.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In