A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow

[+] Author and Article Information
S. W. Churchill, M. Bernstein

Department of Chemical and Biochemical Engineering, University of Pennsylvania, Philadelphia, Pa.

J. Heat Transfer 99(2), 300-306 (May 01, 1977) (7 pages) doi:10.1115/1.3450685 History: Received September 02, 1976; Online August 11, 2010


A single comprehensive equation is developed for the rate of heat and mass transfer from a circular cylinder in crossflow, covering a complete range of Pr (or Sc) and the entire range of Re for which data are available. This expression is a lower bound (except possibly for RePr < 0.2); free-stream turbulence, end effects, channel blockage, free convection, etc., may increase the rate. In the complete absence of free convection, the theoretical expression of Nakai and Okazaki may be more accurate for RePr < 0.2. The correlating equation is based on theoretical results for the effect of Pr in the laminar boundary layer, and on both theoretical and experimental results for the effect of Re. The process of correlation reveals the need for theoretical results for the effect of Pr in the region of the wake. Additional experimental data for the effect of Pr at small Pe and for the effect of Re during the transition in the point of separation are also needed.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In