Dynamics of a Vaporizing Droplet in Laminar Entry Region of a Straight Channel

[+] Author and Article Information
M. S. Bhatti

Owens-Corning Fiberglas Corporation, Technical Center, Granville, Ohio

J. Heat Transfer 99(4), 574-579 (Nov 01, 1977) (6 pages) doi:10.1115/1.3450744 History: Received May 31, 1977; Online August 11, 2010


A theory is developed for two-phase flow wherein droplets suspended in a gas stream penetrate the hydrodynamic boundary layer in the laminar entry region of a straight channel with isothermal walls. A fraction of the droplets is captured by the boundary layer due to isotropic turbulence superimposed at the edge of the the boundary layer. Transverse motion of the droplet is under the influence of Stokes’ drag, buoyancy, gravity and inertia forces. Axial motion of the droplets is with the local gas velocity without slip. Droplet trajectories are determined by the numerical integration of the equations of motion employing the fourth order Runge-Kutta technique. Using these results, a two region model is developed for determining the convective heat transfer conductance augmented by droplet vaporization. Momentum and heat transfer results are presented for air/water-droplet system containing 10μ–50μ droplets under typical conditions encountered in dry cooling towers.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In