Development of Wall and Free Plumes Above a Heated Vertical Plate

[+] Author and Article Information
E. M. Sparrow, S. V. Patankar, R. M. Abdel-Wahed

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Heat Transfer 100(2), 184-190 (May 01, 1978) (7 pages) doi:10.1115/1.3450779 History: Received August 04, 1977; Online August 11, 2010


An analysis has been made to determine the successive stages of development as the natural convection boundary layer on a steadily heated vertical plate evolves into a plume. Both the wall plume and the free plume are investigated. The wall plume develops along an adiabatic wall which is the vertical extension of the heated plate. The free plume is created as the boundary layer streams away from the upper edge of the plate. Since the plate is heated on only one of its faces, the free plume is initially unsymmetric. The development of these plumes does not admit similarity-type boundary layer solutions, and numerical techniques were, therefore, employed, with results being obtained for Prandtl numbers of 0.7, 2, 5, and 10. It was found that at sufficient downstream distances both plumes attain their respective fully developed behaviors (i.e., similar profiles at successive streamwise stations). For the wall plume, the development for all Prandtl numbers is completed at a position that is about five plate lengths above the leading edge of the heated plate. The development length for the free plume for Pr = 0.7 is about the same as that for the wall plume, but about 30 plate lengths are required for the development of the free plume when Pr = 10. The fully developed free plume is symmetric.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In