0
RESEARCH PAPERS

Heat Transfer in Turbulent Pipe Flow for Liquids Having a Temperature-Dependent Viscosity

[+] Author and Article Information
O. T. Hanna, O. C. Sandall

Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, Calif.

J. Heat Transfer 100(2), 224-229 (May 01, 1978) (6 pages) doi:10.1115/1.3450785 History: Received July 22, 1977; Online August 11, 2010

Abstract

Analytical approximations are developed to predict the effect of a temperature-dependent viscosity on convective heat transfer through liquids in fully developed turbulent pipe flow. The analysis expresses the heat transfer coefficient ratio for variable to constant viscosity in terms of the friction factor ratio for variable to constant viscosity, Tw , Tb , and a fluid viscosity-temperature parameter β. The results are independent of any particular eddy diffusivity distribution. The formulas developed here represent an analytical approximation to the model developed by Goldmann. These approximations are in good agreement with numerical solutions of the model nonlinear differential equation. To compare the results of these calculations with experimental data, a knowledge of the effect of variable viscosity on the friction factor is required. When available correlations for the friction factor are used, the results given here are seen to agree well with experimental heat transfer coefficients over a considerable range of μw /μb .

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In