Heat Transfer During Piston Compression

[+] Author and Article Information
M. Nikanjam, R. Greif

University of California, Berkeley Department of Mechanical Engineering and Lawrence Berkeley Laboratory, Berkeley, California 94720

J. Heat Transfer 100(3), 527-530 (Aug 01, 1978) (4 pages) doi:10.1115/1.3450842 History: Received October 21, 1977; Online August 11, 2010


An experimental and theoretical study has been carried out to determine the unsteady heat transfer from a nonreacting gas to the end wall of a channel during the piston compression of a single stroke. A thin platinum film resistance thermometer records the surface temperature of the wall during the compression. A conduction analysis in the wall, subject to the measured surface temperature variation, then yields the unsteady heat flux. A separate analysis based on the solution of the laminar boundary layer equations in the gas provides an independent determination of the heat flux. The two results are shown to be in good agreement. This is true for measurements that were made in air and in argon. Results for the heat transfer coefficient as a function of time are also presented and exhibit a nonmonotonic variation.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In