0
RESEARCH PAPERS

Turbulent Heat Transfer Downstream of an Unsymmetric Blockage in a Tube

[+] Author and Article Information
K. K. Koram, E. M. Sparrow

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Heat Transfer 100(4), 588-594 (Nov 01, 1978) (7 pages) doi:10.1115/1.3450861 History: Received January 10, 1978; Online August 11, 2010

Abstract

Pipe flow experiments were performed to study the heat transfer in the separation, reattachment, and redevelopment regions downstream of a wall-attached blockage in the form of a segmental orifice plate. Water was the working fluid, and the Reynolds number encompassed the range from about 10,000–60,000. The extent of the flow blockage was varied from one-fourth to three-fourths of the tube cross section. Heat transfer coefficients were determined both around the circumference of the uniformly heated tube and along its length. The axial distributions of the circumferential average Nusselt numbers show an initial increase, then attain a maximum, and subsequently decrease toward the fully developed regime. These Nusselt numbers are much higher than those for a conventional thermal entrance region. The unsymmetric blockage induces variations of the Nusselt number around the circumference of the tube. Axial distributions of the Nusselt number at various fixed angular positions reveal the presence of two types of maxima. One of these is associated with the reattachment of the flow and the other occurs due to the impingement of flow deflected by the blockage onto the tube wall. The circumferential variations decay with increasing downstream distance, but the rate of decay for the case of the smallest blockage is remarkably slow. Although most of the tests were performed for Pr = 4, supplementary experiments for Pr = 8 showed that the results are valid for a range of Prandtl numbers.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In