0
RESEARCH PAPERS

Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage

[+] Author and Article Information
A. Bejan

Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309

J. Heat Transfer 100(4), 708-712 (Nov 01, 1978) (5 pages) doi:10.1115/1.3450882 History: Received October 28, 1977; Online August 11, 2010

Abstract

The paper presents a treatment of sensible heat energy storage units as systems intended to store useful work. An analysis of the thermodynamic irreversibilities associated with storing energy from a hot gas source as sensible heat in huge liquid baths points out two important trade-offs: 1. There exists an optimum, well-defined quantity of hot gas to be used in order to maximize the useful work stored in the liquid bath. Using more than this optimum quantity in the hope of maximizing the amount of thermal energy stored as sensible heat leads to severe thermodynamics losses. 2. There exists an optimum relationship among the gas-liquid heat exchanger design parameters which minimizes the system irreversibility while maximizing its capability of storing useful work. This relationship provides a procedure for estimating the heat exchanger optimum number of transfer units (Ntu ). Increasing the Ntu above the optimum in order to upgrade the heat exchanger effectiveness and the thermal energy storage capability leads to prohibitive losses due to fluid friction in the heat exchanger channels. The existence of the two optima demonstrates that designing sensible heat units for maximum thermal energy storage does not necessarily amount to thermodynamically optimizing such systems.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In