Nucleation Processes in Large Scale Vapor Explosions

[+] Author and Article Information
R. E. Henry, H. K. Fauske

Argonne National Laboratory, Argonne, Ill. 60439

J. Heat Transfer 101(2), 280-287 (May 01, 1979) (8 pages) doi:10.1115/1.3450961 History: Received January 26, 1978; Online August 11, 2010


A spontaneous nucleation model is proposed for the mechanisms which lead to explosive boiling in the free contacting mode. The model considers that spontaneous nucleation cannot occur until the thermal boundary layer is sufficiently thick to support a critical size vapor cavity, and that significant bubble growth requires an established pressure gradient in the cold liquid. This results in a prediction that, for an interface temperature above the spontaneous nucleation limit, large cold liquid droplets will remain in film boiling due to coalescence of vapor nuclei, whereas smaller droplets will be captured by the hot liquid surface and rapidly vaporize, which agrees with the experimental observations. The model also predicts that explosions are eliminated by an elevated system pressure or a supercritical contact interface temperature, and this is also in agreement with experimental data.

Copyright © 1979 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In