Simultaneous Wall and Fluid Axial Conduction in Laminar Pipe-Flow Heat Transfer

[+] Author and Article Information
M. Faghri

Department of Mechanical Engineering, Tehran University of Technology, Tehran, Iran

E. M. Sparrow

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn. 55455

J. Heat Transfer 102(1), 58-63 (Feb 01, 1980) (6 pages) doi:10.1115/1.3244249 History: Received June 01, 1979; Online October 20, 2009


Consideration is given to a laminar pipe flow in which the upstream portion of the wall is externally insulated while the downstream portion of the wall is uniformly heated. An analysis of the problem is performed whose special feature is the accounting of axial conduction in both the tube wall and in the fluid. This conjugate heat transfer problem is governed by two dimensionless groups—a wall conductance parameter and the Peclet number, the latter being assigned values from 5 to 50. From numerical solutions, it was found that axial conduction in the wall can carry substantial amounts of heat upstream into the non directly heated portion of the tube. This results in a preheating of both the wall and the fluid in the upstream region, with the zone of preheating extending back as far as twenty radii. The preheating effect is carried downstream with the fluid, raising temperatures all along the tube. The local Nusselt number exhibits fully developed values in the upstream (non directly heated) region as well as in the downstream (directly heated) region. Of the two effects, wall axial conduction can readily overwhelm fluid axial conduction.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In