Boundary Layer Regime for Laminar Free Convection between Horizontal Circular Cylinders

[+] Author and Article Information
M. C. Jischke, M. Farshchi

School of Aerospace, Mechanical, and Nuclear Engineering, University of Oklahoma, Norman, Okla.

J. Heat Transfer 102(2), 228-235 (May 01, 1980) (8 pages) doi:10.1115/1.3244265 History: Received September 21, 1979; Online October 20, 2009


The steady, buoyancy-driven, laminar motion induced in the annulus of two horizontal, concentric, circular cylinders by a difference in the boundary temperatures is studied analytically in the large Rayleigh number limit. The flowfield is divided into five physically distinct regions: (1) an inner free convection boundary layer near the inner cylinder, (2) an outer free convection boundary layer near the outer cylinder, (3) a vertical plume above the inner cylinder, (4) a stagnant region below the inner cylinder, and (5) a core region surrounded by the other four regions. Zeroth-order solutions which account for the coupling of those five regions are obtained in the high Prandtl number limit using a boundary-layer approximation and integral methods. Comparisons of the calculated heat transfer and temperature fields with experiment and numerical finite-difference results are favorable.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In