0
RESEARCH PAPERS

Heat Transfer Coefficients on the Downstream Face of an Abrupt Enlargement or Inlet Constriction in a Pipe

[+] Author and Article Information
E. M. Sparrow, J. E. O’Brien

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn. 55455

J. Heat Transfer 102(3), 408-414 (Aug 01, 1980) (7 pages) doi:10.1115/1.3244314 History: Received January 17, 1980; Online October 20, 2009

Abstract

Measurements were made of the local and average heat transfer coefficients on the downstream face of an enlargement step in a pipe. Two flow configurations were investigated: (a) an abrupt enlargement from a smaller diameter pipe to a larger diameter pipe and (b) partial constriction of a pipe inlet by a large baffle plate. Air was the working fluid. The transfer coefficients were determined by means of the naphthalene sublimation technique; axial pressure distributions were also measured. The highest values of the local transfer coefficient were found to occur on the portion of the enlargement face adjacent to the aperture through which the flow enters the enlarged space. On the other hand, the lowest coefficients occur in the corner where the enlargement face meets the wall of the enlarged pipe. The radial distributions of the transfer coefficient on the enlargement face vary with the Reynolds number. With regard to average transfer coefficients, higher values (by at least 50 percent) are attained for the constricted inlet than for the abrupt enlargement. The average coefficients for the enlargement face are much higher (by a factor of two or three) than those on the wall of the enlarged pipe for fully developed flow conditions.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In