Destabilization of Film Boiling Due to Arrival of a Pressure Shock—Part I: Experimental

[+] Author and Article Information
A. Inoue

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan

S. G. Bankoff

Chemical Engineering Department, Northwestern University, Evanston, IL 60201

J. Heat Transfer 103(3), 459-464 (Aug 01, 1981) (6 pages) doi:10.1115/1.3244486 History: Received November 07, 1979; Online October 20, 2009


Transient heat transfer from an electrically-heated 3 mm o.d. horizontal tube, initially in subcooled film boiling, was measured immediately after passage of a shock wave of 1–5 × 105 N/m2 over-pressure. The fluids tested were Freon-113 and 95 percent ethanol-5 percent water at initially 0.5–2 × 105 N/m2 at 22–24° C. Transient heat transfer rates, averaged over 0.5–1 ms after vapor film collapse, ranged up to 20 times the steady-state value. The maximum transient flux occurred at supercritical contact temperatures, with frequently a minimum in the range of contact temperatures between the homogeneous nucleation and the critical temperature. Photography at 5000 frames/s showed apparently complete vapor film collapse within one or two frames, followed by re-establishment of film boiling in ∼1 ms, and eventually nucleate boiling in ∼100 ms. The surface temperature which gave the highest peak transient flux shifted appreciably with increasing shock pressure, which indicates some compressibility even after “contact” was made. Implications for vapor explosions are discussed.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In