0
RESEARCH PAPERS

Buoyancy-Induced Flow Due to Isolated Thermal Sources on a Vertical Surface

[+] Author and Article Information
Y. Jaluria

Mechanical and Aerospace Engineering Department, Rutgers University, New Brunswick, N.J. 08903

J. Heat Transfer 104(2), 223-227 (May 01, 1982) (5 pages) doi:10.1115/1.3245076 History: Received April 27, 1981; Online October 20, 2009

Abstract

The natural convection flow due to multiple isolated heated elements located on a vertical adiabatic surface has been studied analytically. The problem, which is of particular relevance to electronic circuitry cooling and to the question of locating sources in manufacturing systems, is considered for a Prandtl number of 0.7, which applies for air. Of particular interest were the temperature and velocity fields that arise and the dependence of these on the heat input and on the distance between the heated elements. The flow is treated as a boundary layer problem and the governing equations are solved numerically. The results obtained indicate the general nature of the flow and the dependence of the heat-transfer coefficient for an element, located in the wake of another, on the energy input and location. The downstream variation of the surface temperature, the velocity level, and the resulting velocity and temperature profiles are studied in detail. The results obtained are also compared with those for a single source, bringing out several interesting features.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In