0
RESEARCH PAPERS

Corrugated-Duct Heat Transfer, Pressure Drop, and Flow Visualization

[+] Author and Article Information
J. E. O’Brien, E. M. Sparrow

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn. 55455

J. Heat Transfer 104(3), 410-416 (Aug 01, 1982) (7 pages) doi:10.1115/1.3245108 History: Received November 23, 1981; Online October 20, 2009

Abstract

Experiments were performed to determine forced convection heat-transfer coefficients and friction factors for flow in a corrugated duct. The corrugation angle was 30 deg and the interwall spacing was equal to the corrugation height. The Reynolds number, based on the duct hydraulic diameter, ranged from 1500 to 25,000, and the Prandtl number ranged from 4 to 8 (water). Flow visualization, using the oil-lampblack technique, revealed a highly complex flow pattern, including large zones of recirculation adjacent to the rearward-facing corrugation facets. Nusselt numbers in the periodic fully developed regime, when correlated, resulted in a Reynolds-number dependence of Re0.614 and a Prandtl-number dependence of Pr0.34 . The enhancement of heat transfer as compared to a conventional parallel-plate channel was about a factor of 2.5. Friction factors obtained from measured axial pressure distributions were virtually independent of the Reynolds number and equal to 0.57, a value appreciably greater than that for unidirectional duct flows.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In