0
RESEARCH PAPERS

Laminar Forced Convection Heat Transfer in Spherical Annuli

[+] Author and Article Information
S. Ramadhyani, M. M. Torbaty, K. N. Astill

Department of Mechanical Engineering, Tufts University, Medford, Mass. 02155

J. Heat Transfer 105(2), 341-349 (May 01, 1983) (9 pages) doi:10.1115/1.3245584 History: Received November 16, 1981; Online October 20, 2009

Abstract

An analysis is presented of forced convection heat transfer in spherical annuli bounded by isothermal surfaces at different temperatures. Flow enters the annulus through a port in the outer sphere and exits through a diametrically opposite port. The conservation equations of mass, momentum, and energy are reduced to dimensionless form, and the governing parameters of the problem are identified. Solutions are obtained for several values of each of the governing parameters via a numerical finite-difference procedure. It is found that very complex flow patterns can prevail within the annulus, particularly at high Reynolds numbers. Details of the flow field are presented by means of velocity and pressure profile plots. The effect of the flow patterns on the heat transfer phenomena is discussed by examining temperature profiles and variations of the local Nusselt number along the spherical surfaces. In addition, the circumferential average Nusselt numbers at the two spherical surfaces are presented as functions of the governing parameters of the problem. These graphs of average Nusselt numbers constitute information that could be used in the design of spherical annulus heat transfer equipment.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In