0
RESEARCH PAPERS

Analysis of Turbulent Thermal Convection Between Horizontal Plates

[+] Author and Article Information
M. Kaviany

Department of Mechanical Engineering, University of Wisconsin—Milwaukee, Milwaukee, Wis. 53201

R. Seban

Department of Mechanical Engineering, University of California—Berkeley, Berkeley, Calif. 94720

J. Heat Transfer 105(4), 789-794 (Nov 01, 1983) (6 pages) doi:10.1115/1.3245663 History: Received May 17, 1983; Online October 20, 2009

Abstract

The one-equation model of turbulence is applied to the turbulent thermal convection between horizontal plates maintained at constant temperatures. A pseudo-three-layer model is used consisting of a conduction sublayer adjacent to the plates, a turbulent region within which the mixing length increases linearly, and a turbulent core within which the mixing length is a constant. It is assumed that the Nusselt number varies with the Rayleigh number to the one-third power. As a result, the steady-state distributions of the turbulent kinetic energy and the mean temperature are obtrained and presented in closed forms. These results include the effects of Prandtl number. The predictions are compared with the available experimental results for different Prandtl and Rayleigh numbers. Also included are the predictions of Kraichnan, which are based on a less exact analysis. The results of the one-equation model are in fair agreement with the experimental results for the distribution of the turbulent kinetic energy and the mean temperature distribution. The predictions of Kraichnan are in better agreement with the experimental results for the mean temperature distribution.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In