0
RESEARCH PAPERS

On the Cooling of Fibers

[+] Author and Article Information
A. Moutsoglou

Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061

J. Heat Transfer 105(4), 830-834 (Nov 01, 1983) (5 pages) doi:10.1115/1.3245669 History: Received October 04, 1982; Online October 20, 2009

Abstract

The effects of the stretching of filaments on the cooling of fibers during the melt-spinning process are studied numerically. The filament is modeled as a continuous, cylindrical cone that moves steadily through an otherwise quiescent environment, with its diameter attenuating exponentially. Radiative cooling from the fiber surface is also accounted for in the analysis. The buoyancy-affected laminar and turbulent boundary layer equations are solved by a finite difference scheme, to determine the axial temperature variation of the filament. It is found that the reduction of the fiber diameter and the subsequent increase in the local speed of the filament enhances greatly the cooling from the filament surface, whereas the increase of the cooling due to radiative losses is not significant for all the flow cases considered.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In