Rotary Heat Exchangers With Time Varying or Nonuniform Inlet Temperatures

[+] Author and Article Information
M. J. Brandemuehl

Research Division, Carrier Corporation, Syracuse, N.Y. 13221

P. J. Banks

Division of Energy Technology, Commonwealth Scientific and Industrial Research Organization, Highett, Victoria 3190, Australia

J. Heat Transfer 106(4), 750-758 (Nov 01, 1984) (9 pages) doi:10.1115/1.3246748 History: Received September 11, 1981; Online October 20, 2009


The performance of a counterflow, rotary heat exchanger operating with either transient or nonuniform inlet temperatures is investigated. The effect of transient inlet temperatures is analyzed in terms of the response of the outlet fluid temperatures to a step change in temperature of one of the inlet fluid streams. The effect of temperature nonuniformities is analyzed in terms of the change in steady-state effectiveness due to a circumferential temperature distribution in one of the inlet fluid streams. These temporal and spatial variations are explored using three different methods of analysis. An equilibrium analysis, assuming infinite heat transfer coefficients, is developed from kinematic wave theory. It is used to qualitatively describe the heat transfer process and define the upper limit of performance. A finite difference model of the governing differential equations, using finite transfer coefficients, is employed to obtain a detailed numerical analysis of heat exchanger performance. Results for the complete range of matrix to fluid capacity rate ratio are presented for a balanced and symmetric regenerator. At moderate capacity rate ratios, the numerical analysis predicts unusual temporal periodicity in the transient response. An experimental analysis has also been conducted using a counterflow, parallel passage, rotary heat exchanger made from polyester film. The results are used to substantiate predictions of the numerical model.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In