0
RESEARCH PAPERS

Effect of Fin Spacing on the Performance of Horizontal Integral-Fin Condenser Tubes

[+] Author and Article Information
K. K. Yau, J. R. Cooper, J. W. Rose

Department of Mechanical Engineering, Queen Mary College, London, England E1 4NS

J. Heat Transfer 107(2), 377-383 (May 01, 1985) (7 pages) doi:10.1115/1.3247425 History: Received June 10, 1983; Online October 20, 2009

Abstract

The dependence of heat transfer performance on fin spacing has been investigated for condensation of steam on horizontal integral-fin tubes. Thirteen tubes have been used with rectangular section fins having the same width and height (0.5 mm and 1.6 mm) and with fin pitch varying from 1.0 mm to 20.5 mm. For comparison, tests were made using a plain tube having the same inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. All tests were made at near-atmospheric pressure with vapor flowing vertically downward with velocities between 0.5 m/s and 1.1 m/s. The observed heat transfer enhancement for the finned tubes significantly exceeded that to be expected on grounds of increased area. Plots of enhancement against fin density were repeatable and showed local maxima and minima. The dependence of enhancement on fin density did not depend appreciably on vapor velocity or condensation rate for the ranges used. The maximum vapor-side enhancement (i.e., vapor-side heat transfer coefficient of finned tube/vapor-side coefficient for plain tube) was found to be around 3.6 for the tube with a fin spacing of 1.5 mm.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In