0
RESEARCH PAPERS

Measurements and Predictions of Laminar Mixed Convection Flow Adjacent to a Vertical Surface

[+] Author and Article Information
N. Ramachandran, B. F. Armaly, T. S. Chen

Department of Mechanical and Aerospace Engineering, University of Missouri—Rolla, Rolla, MO 65401

J. Heat Transfer 107(3), 636-641 (Aug 01, 1985) (6 pages) doi:10.1115/1.3247471 History: Received March 28, 1984; Online October 20, 2009

Abstract

Measurements and predictions of laminar mixed forced and free convection air flow adjacent to an isothermally heated vertical flat surface are reported. Local Nusselt numbers and the velocity and temperature distributions are presented for both the buoyancy assisting and opposing flow cases over the entire mixed convection regime, from the pure forced convection limit (buoyancy parameter ξ = Grx /Rex 2 = 0) to the pure free convection limit (ξ = ∞). The measurements are in very good agreement with predictions and deviate from the pure forced and free convection regimes for buoyancy assisting flow in the region of 0.01 ≤ ξ ≤ 10 and for opposing flow in the region of 0.01<ξ< 0.2. The local Nusselt number increases for buoyancy assisting flow and decreases for opposing flow with increasing value of the buoyancy parameter. The mixed convection Nusselt numbers are larger than the corresponding pure forced and pure free convection limits for buoyancy assisting flow and are smaller than these limits for opposing flow. For buoyancy assisting flow, the velocity overshoot and wall shear stress increase, whereas the temperature decreases but the temperature gradient at the wall increases as the buoyancy parameter increases. The reverse trend is observed for the opposing flow. Flow reversal near the wall was detected for the buoyancy opposing flow case at a buoyancy parameter of about ξ = 0.20.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In