A Model of Flow in a Closed-Loop Thermosyphon Including the Soret Effect

[+] Author and Article Information
J. E. Hart

Department of Astrophysical, Planetary and Atmospheric Sciences, University of Colorado, Boulder, CO 80309

J. Heat Transfer 107(4), 840-849 (Nov 01, 1985) (10 pages) doi:10.1115/1.3247512 History: Received August 08, 1984; Online October 20, 2009


This theoretical study addresses the nature of convective motions in a toroidal loop of binary fluid oriented in the vertical plane and heated from below. The boundaries of the loop are impermeable, but gradients of the solute can be set up by Soret diffusion in the direction around the loop. The existence and stability of steady solutions are discussed over the Rayleigh number-Soret coefficient parameter plane. When the Soret coefficient is negative, periodic and chaotic oscillations analogous to those of thermohaline convection are predicted. When the Soret coefficient is positive, relaxation oscillations and low Rayleigh number chaotic motions are found. Both sets of phenomena are predicted to occur for realistic thermosyphon parameters.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In