0
RESEARCH PAPERS

An Experimental and Analytical Study of Close-Contact Melting

[+] Author and Article Information
M. K. Moallemi, B. W. Webb, R. Viskanta

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Heat Transfer 108(4), 894-899 (Nov 01, 1986) (6 pages) doi:10.1115/1.3247030 History: Received September 17, 1985; Online October 20, 2009

Abstract

Close-contact melting was investigated by performing a series of experiments in which blocks of solid n-octadecane (with circular or rectangular cross section) were melted by a horizontal planar heat source at constant surface temperature. Close contact between the source and the solid prevailed throughout the experiments by permitting the uncontained solid to descend under its own weight while squeezing the melt out of the gap separating it from the source. The velocity of the solid was measured and is reported as a function of the instantaneous weight of the solid. Effects of the surface temperature of the source and radius of the solid on its temporal velocity are also reported. A closed-form approximate solution is developed for the motion of solid and predictions are compared with the experimental data. The results for the solid velocity are correlated in terms of the governing parameters of the problem as revealed by the approximate solution. Compared with natural convection-dominated melting from below (solid confined and contained in a rectangular cavity) close contact gives rise to approximately a sevenfold increase in the melting rate of the solid.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In