Entropy Generation in Convective Heat Transfer and Isothermal Convective Mass Transfer

[+] Author and Article Information
J. Y. San, W. M. Worek, Z. Lavan

Illinois Institute of Technology, Department of Mechanical and Aerospace Engineering, Chicago, IL 60616

J. Heat Transfer 109(3), 647-652 (Aug 01, 1987) (6 pages) doi:10.1115/1.3248137 History: Received November 14, 1985; Online October 20, 2009


The irreversible generation of entropy for two limiting cases of combined forced-convection heat and mass transfer in a two-dimensional channel are investigated. First, convective heat transfer in a channel with either constant heat flux or constant surface temperature boundary conditions are considered for laminar and turbulent flow. The entropy generation is minimized to yield expressions for optimum plate spacing and optimum Reynolds numbers for both boundary conditions and flow regimes. Second, isothermal convective mass transfer in a channel is considered, assuming the diffusing substance to be an ideal gas with Lewis number equal to unity. The flow is considered to be either laminar or turbulent with boundary conditions at the channel walls of either constant concentration or constant mass flux. The analogy between heat and mass transfer is used to determine the entropy generation and the relations for optimum plate spacing and Reynolds number. The applicable range of the results for both limiting cases are then investigated by non-dimensionalizing the entropy generation equation.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In