0
RESEARCH PAPERS

Thermal Instability of a Fluid-Saturated Porous Medium Bounded by Thin Fluid Layers

[+] Author and Article Information
G. Pillatsis, M. E. Taslim, U. Narusawa

Department of Mechanical Engineering, Northeastern University, Boston, MA 02115

J. Heat Transfer 109(3), 677-682 (Aug 01, 1987) (6 pages) doi:10.1115/1.3248141 History: Received June 03, 1985; Online October 20, 2009

Abstract

A linear stability analysis is performed for a horizontal Darcy porous layer of depth 2dm sandwiched between two fluid layers of depth d (each) with the top and bottom boundaries being dynamically free and kept at fixed temperatures. The Beavers–Joseph condition is employed as one of the interfacial boundary conditions between the fluid and the porous layer. The critical Rayleigh number and the horizontal wave number for the onset of convective motion depend on the following four nondimensional parameters: d̂ ( = dm /d , the depth ratio), δ ( = K/dm with K being the permeability of the porous medium), α (the proportionality constant in the Beavers–Joseph condition), and k/km (the thermal conductivity ratio). In order to analyze the effect of these parameters on the stability condition, a set of numerical solutions is obtained in terms of a convergent series for the respective layers, for the case in which the thickness of the porous layer is much greater than that of the fluid layer. A comparison of this study with the previously obtained exact solution for the case of constant heat flux boundaries is made to illustrate quantitative effects of the interfacial and the top/bottom boundaries on the thermal instability of a combined system of porous and fluid layers.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In