Modeling of the Two-Phase Closed Thermosyphon

[+] Author and Article Information
J. G. Reed, C. L. Tien

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Heat Transfer 109(3), 722-730 (Aug 01, 1987) (9 pages) doi:10.1115/1.3248150 History: Received November 22, 1985; Online October 20, 2009


A comprehensive model is developed to predict the steady-state and transient performance of the two-phase closed thermosyphon. One-dimensional governing equations for the liquid and vapor phases are developed using available correlations to specify the shear stress and heat transfer coefficients. Steady-state solutions agree well with thermosyphon flooding data from several sources and with film thickness data obtained in the present investigation. While no data are available with which to compare the transient analysis, the results indicate that, for most systems, the governing time scale for system transients is the film residence time, which is typically much longer than the times required for viscous and thermal diffusion through the film. The proposed model offers a versatile and comprehensive analysis tool which is relatively simple.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In