0
RESEARCH PAPERS

Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel

[+] Author and Article Information
D. E. Metzger, R. S. Bunker, M. K. Chyu

Mechanical and Aerospace Engineering Department, Arizona State University, Tempe, AZ 85287

J. Heat Transfer 111(1), 73-79 (Feb 01, 1989) (7 pages) doi:10.1115/1.3250661 History: Received May 16, 1986; Online October 20, 2009

Abstract

Measurements are presented of local convection heat transfer for the case of flow through a narrow slot-type channel where one of the bounding walls contains a transverse rectangular cavity. The experimental situation is a stationary modeling of some salient features of flow through the clearance gap at the grooved tips of axial turbine blades. Cavity depth-to-width ratios of 0.1, 0.2, and 0.5 are included for each of clearance-to-width ratios of 0.05, 0.10, and 0.15. Overall heat transfer on the cavity floor is in general reduced as cavity depth is increased, but reduction with the deepest cavity tested is essentially the same as that of the intermediate depth cavity. Resistance to flow through the gap is increased as cavity depth is increased, but again the change between the deepest and intermediate depth cavities is small. In addition to the stationary experiments, heat transfer in the cavity with a moving as well as stationary shroud is modeled with a finite-difference method. The numerical results indicate that, within the range of parameters considered, heat transfer characteristics in the cavity are virtually unaffected by the shroud movement. This is in agreement with a previous finding for heat transfer on ungrooved blade tips.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In