0
RESEARCH PAPERS

Steady-State Modeling and Testing of a Micro Heat Pipe

[+] Author and Article Information
B. R. Babin, G. P. Peterson, D. Wu

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

J. Heat Transfer 112(3), 595-601 (Aug 01, 1990) (7 pages) doi:10.1115/1.2910428 History: Received January 20, 1989; Revised October 20, 1989; Online May 23, 2008

Abstract

A combined experimental and analytical investigation was conducted to identify and understand better the phenomena that govern the performance limitations and operating characteristics of micro heat pipes—heat pipes so small that the mean curvature of the vapor—liquid interface is comparable in magnitude to the reciprocal of the hydraulic radius of the flow channel. The analytical portion of the investigation began with the development of a steady-state model in which the effects of the extremely small characteristic dimensions on the conventional steady-state heat pipe modeling techniques were examined. In the experimental portion of the investigation, two micro heat pipes, one copper and one silver, 1 mm2 in cross-sectional area and 57 mm in length, were evaluated experimentally to determine the accuracy of the steady-state model and to provide verification of the micro heat pipe concept. Tests were conducted in a vacuum environment to eliminate conduction and convection losses. The steady-state experimental results obtained were compared with the analytical model and were found to predict accurately the experimentally determined maximum heat transport capacity for an operating temperature range of 40° C to 60° C. A detailed description of the methodology used in the development of the steady-state model along with a comparison of the predicted and experimental results are presented.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In