0
RESEARCH PAPERS

Experimental Study of Boiling Heat Transfer From a Sphere Embedded in a Liquid-Saturated Porous Medium

[+] Author and Article Information
V. X. Tung, V. K. Dhir

Mechanical, Aerospace and Nuclear Engineering Department, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90024-1597

J. Heat Transfer 112(3), 736-743 (Aug 01, 1990) (8 pages) doi:10.1115/1.2910448 History: Received April 12, 1989; Revised November 20, 1989; Online May 23, 2008

Abstract

Boiling heat transfer from a sphere embedded in a porous medium composed of nonheated glass particles was studied under steady-state and transient quenching conditions. In the experiments, the diameter of the nonheated glass particles forming the porous layers was varied parametrically. Freon-113 was used as the test liquid. Experimental results showed that the maximum heat flux increased monotonically with increasing glass particle diameter and approached an asymptotic value corresponding to the maximum heat flux obtained in a pool free of glass particles. It was also observed that the minimum heat flux was nearly insensitive to the particle size and the film boiling heat transfer coefficient increased slightly with decreasing particle size. In the nucleate boiling region, the heat transfer coefficient showed a much weaker dependence on wall superheat in the presence of particles. Transient data indicated that the surface temperature was not uniform during quenching. Therefore, different maximum heat fluxes were obtained depending on the location of the thermocouple whose temperature history was employed in recovering the transient boiling curve. However, for some applications, cooling rates predicted by imposing the steady-state boiling curve may not be in large error.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In