Effect of Metallic Coatings on the Thermal Contact Conductance of Turned Surfaces

[+] Author and Article Information
T. K. Kang, G. P. Peterson, L. S. Fletcher

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

J. Heat Transfer 112(4), 864-871 (Nov 01, 1990) (8 pages) doi:10.1115/1.2910493 History: Received April 18, 1989; Revised February 19, 1990; Online May 23, 2008


An experimental investigation was conducted to determine the degree to which the thermal contact conductance at the interface of contacting Aluminum 6061 T6 surfaces could be enhanced through the use of vapor-deposited metallic coatings. Three different coating materials (lead, tin, and indium) were evaluated using four different thicknesses for each coating material. The results verified the existence of an optimum coating thickness, shown to be in the range of 2.0 to 3.0 μm for indium, 1.5 to 2.5 μm for lead, and 0.2 to 0.5 μm for tin. The enhancement factors for thermal contact conductance were found to be on the order of 700, 400, and 50 percent, respectively. Based upon the experimental data, the hardness of the coating materials appears to be the most significant parameter in ranking the substrate and coating material combinations; however, additional experimental data are needed to substantiate this hypothesis. Finally, it was apparent that the thermal contact conductance enhancement effect was greatest at low contact pressures and decreased significantly with increases in the contact pressure.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In