0
RESEARCH PAPERS

Thermal Analysis of In-Situ Thermoplastic-Matrix Composite Filament Winding

[+] Author and Article Information
M. N. Ghasemi Nejhad, R. D. Cope, S. I. Güçeri

Department of Mechanical Engineering, University of Delaware, Newark, DE 19716

J. Heat Transfer 113(2), 304-313 (May 01, 1991) (10 pages) doi:10.1115/1.2910562 History: Received February 13, 1990; Revised June 27, 1990; Online May 23, 2008

Abstract

In filament winding of thermoplastics, localized melting/solidification can reduce the residual stresses and allow for improved dimensional stability and performance. This paper presents a three-dimensional thermal analysis for melting and consolidating impregnated tows in the presence of a local heat source during filament winding of thermoplastic composites. The analysis is performed using an Eulerian approach. The anisotropy of the filament wound woven structure is modeled as an orthotropic domain employing the concept of angle-ply sublaminates. The effective orthotropic conductivity tensor incorporates the effect of winding angle. The governing equations are discretized in a nonuniform mesh domain and solved using a finite difference approach. The processing parameters, such as winding angle, winding speed, and heat input, as well as material properties, are incorporated into the analysis. The results show large thermal gradients in the vicinity of the consolidation point. The effects of winding speed and heat input are investigated, and the overall thermal characterization of the process is discussed. The accuracy of the numerical method is assessed by comparing the results of a test problem with an available analytical solution.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In