0
RESEARCH PAPERS

Heat Transfer Characteristics of Porous Radiant Burners

[+] Author and Article Information
T. W. Tong, S. B. Sathe

Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287

J. Heat Transfer 113(2), 423-428 (May 01, 1991) (6 pages) doi:10.1115/1.2910578 History: Received May 19, 1989; Revised August 20, 1990; Online May 23, 2008

Abstract

This paper reports a numerical study of the heat transfer characteristics of porous radiant burners, which have significant advantages over conventional burners. The heat transfer characteristics are investigated using a one-dimensional conduction, convection, and radiation model. The combustion phenomenon is modeled as spatially dependent heat generation. Nonlocal thermal equilibrium between the gas and solid phases is accounted for by using separate energy equations for the two phases. The solid matrix is assumed to emit, absorb, and scatter radiant energy. The spherical harmonics approximation is used to solve the radiative transfer equation. The coupled energy equations and the radiative transfer equations are solved using a numerical iterative procedure. The effects of the various factors on the performance of porous radiant burners are determined. It is revealed that for a given rate of heat generation, large optical thicknesses and high heat transfer coefficients between the solid and gas phases are desirable for maximizing radiant output. Also, low solid thermal conductivities, scattering albedos and flow velocities, and high inlet environment reflectivities produced high radiant output.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In